Pregunta
Evaluate the limit: \( \lim _{x \rightarrow-1} \frac{x^{2}-x-2}{x+1} \) Question Help: Video Message instructor Submit Question Jump to Answer Sum
Ask by King Turnbull. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The limit is \(-3\).
Solución
To evaluate the limit:
\[
\lim_{x \rightarrow -1} \frac{x^{2} - x - 2}{x + 1}
\]
**Step 1: Substitute \( x = -1 \) directly into the expression to check for indeterminate forms.**
\[
\frac{(-1)^2 - (-1) - 2}{-1 + 1} = \frac{1 + 1 - 2}{0} = \frac{0}{0}
\]
Since we obtain an indeterminate form \( \frac{0}{0} \), we can apply algebraic techniques to simplify the expression.
**Step 2: Factor the numerator.**
The numerator is a quadratic expression:
\[
x^2 - x - 2
\]
We look for two numbers that multiply to \(-2\) and add to \(-1\). These numbers are \(-2\) and \(1\).
\[
x^2 - x - 2 = (x - 2)(x + 1)
\]
**Step 3: Simplify the expression by canceling common factors.**
\[
\frac{(x - 2)(x + 1)}{x + 1}
\]
For \( x \neq -1 \), we can cancel \( (x + 1) \) from the numerator and the denominator:
\[
\frac{(x - 2)\cancel{(x + 1)}}{\cancel{x + 1}} = x - 2
\]
**Step 4: Evaluate the simplified expression at \( x = -1 \).**
\[
\lim_{x \rightarrow -1} (x - 2) = (-1) - 2 = -3
\]
**Conclusion:**
The limit is **\(-3\)**.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Bonus Knowledge
To evaluate the limit \( \lim _{x \rightarrow -1} \frac{x^{2}-x-2}{x+1} \), first, we can simplify the expression by factoring the numerator. The expression \( x^{2}-x-2 \) factors to \( (x-2)(x+1) \). Now, substituting the factored form into the limit gives us: \[ \lim _{x \rightarrow -1} \frac{(x-2)(x+1)}{x+1} \] For \( x \neq -1 \), we can cancel \( x + 1 \) from the numerator and denominator: \[ \lim _{x \rightarrow -1} (x-2) \] Now, substituting \( x = -1 \): \[ -1 - 2 = -3 \] Thus, the limit is: \[ \boxed{-3} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium