Pregunta
upstudy study bank question image url

Use the information given about the angle \( \theta, \cot \theta=-8, \sec \theta<0,0 \leq \theta<2 \pi \), to find the exact values of the following. \( \begin{array}{l}\text { (a) } \sin (2 \theta), \text { (b) } \cos (2 \theta), \text { (c) } \sin \frac{\theta}{2} \text {, and (d) } \cos \frac{\theta}{2} \\ \text { (a) } \sin (2 \theta)=\square \text { (Type an exact answer, using radicals as needed.) }\end{array} \)

Ask by Wood Bowers. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \sin(2\theta) = -\frac{16}{65} \)

Solución

Given: - \( \cot \theta = -8 \) - \( \sec \theta < 0 \) - \( 0 \leq \theta < 2\pi \) We need to find \( \sin(2\theta) \). **Step 1: Determine \( \sin \theta \) and \( \cos \theta \)** From \( \cot \theta = \frac{\cos \theta}{\sin \theta} = -8 \), we can express: \[ \cos \theta = -8 \sin \theta \] Since \( \sec \theta < 0 \), it implies \( \cos \theta < 0 \). Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substitute \( \cos \theta = -8 \sin \theta \): \[ \sin^2 \theta + (-8 \sin \theta)^2 = 1 \] \[ \sin^2 \theta + 64 \sin^2 \theta = 1 \] \[ 65 \sin^2 \theta = 1 \] \[ \sin \theta = \frac{1}{\sqrt{65}} \] \[ \cos \theta = -8 \cdot \frac{1}{\sqrt{65}} = -\frac{8}{\sqrt{65}} \] **Step 2: Compute \( \sin(2\theta) \)** Using the double-angle identity: \[ \sin(2\theta) = 2 \sin \theta \cos \theta \] \[ \sin(2\theta) = 2 \cdot \frac{1}{\sqrt{65}} \cdot \left(-\frac{8}{\sqrt{65}}\right) \] \[ \sin(2\theta) = \frac{-16}{65} \] **Answer:** \[ \sin(2\theta) = -\frac{16}{65} \] Answer: Problem a Answer \(\sin(2\theta) = -\dfrac{16}{65}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the problem, we start by using the information given about \( \cot \theta \) and \( \sec \theta \). Since \( \cot \theta = -8 \), we have: \[ \cot \theta = \frac{\cos \theta}{\sin \theta} = -8 \] This indicates that \( \cos \theta \) and \( \sin \theta \) have different signs. Additionally, \( \sec \theta < 0 \) tells us that \( \cos \theta < 0 \). Therefore, \( \sin \theta > 0 \), which places \( \theta \) in the second quadrant where sine is positive and cosine is negative. We can express \( \sin \theta \) and \( \cos \theta \) in terms of a right triangle where \( \cos \theta = -8k \) and \( \sin \theta = k \). Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ (k)^2 + (-8k)^2 = 1 \] \[ k^2 + 64k^2 = 1 \] \[ 65k^2 = 1 \implies k^2 = \frac{1}{65} \implies k = \frac{1}{\sqrt{65}} \] This gives: \[ \sin \theta = \frac{1}{\sqrt{65}}, \quad \cos \theta = -\frac{8}{\sqrt{65}} \] Now, we can find \( \sin 2\theta \) and \( \cos 2\theta \): \[ \sin 2\theta = 2 \sin \theta \cos \theta = 2 \left(\frac{1}{\sqrt{65}}\right) \left(-\frac{8}{\sqrt{65}}\right) = -\frac{16}{65} \] Thus, \[ \text{(a) } \sin (2 \theta) = -\frac{16}{65} \] Now, for \( \cos 2\theta \): \[ \cos 2\theta = \cos^2 \theta - \sin^2 \theta = \left(-\frac{8}{\sqrt{65}}\right)^2 - \left(\frac{1}{\sqrt{65}}\right)^2 = \frac{64}{65} - \frac{1}{65} = \frac{63}{65} \] So, \[ \text{(b) } \cos (2 \theta) = \frac{63}{65} \] Next, we find \( \sin \frac{\theta}{2} \) and \( \cos \frac{\theta}{2} \) using the half-angle formulas: \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}} = \sqrt{\frac{1 + \frac{8}{\sqrt{65}}}{2}} = \sqrt{\frac{\frac{\sqrt{65} + 8}{\sqrt{65}}}{2}} = \frac{\sqrt{\sqrt{65} + 8}}{\sqrt{130}} \] And for \( \cos \frac{\theta}{2} \): \[ \cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} = \sqrt{\frac{1 - \frac{8}{\sqrt{65}}}{2}} = \sqrt{\frac{\frac{\sqrt{65} - 8}{\sqrt{65}}}{2}} = \frac{\sqrt{\sqrt{65} - 8}}{\sqrt{130}} \] Thus, the final answers are: (a) \( \sin (2 \theta) = -\frac{16}{65} \) (b) \( \cos (2 \theta) = \frac{63}{65} \) (c) \( \sin \frac{\theta}{2} = \frac{\sqrt{\sqrt{65} + 8}}{\sqrt{130}} \) (d) \( \cos \frac{\theta}{2} = \frac{\sqrt{\sqrt{65} - 8}}{\sqrt{130}} \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad