Pregunta
upstudy study bank question image url

Scores of an IQ test have a bell-shaped distribution with a mean of 100 and a standard deviation of 19 . Use the empirical rule to determine the following. (a) What percentage of people has an IQ score between 81 and 119 ? (b) What percentage of people has an IQ score less than 43 or greater than 157 ? (c) What percentage of people has an IQ score greater than 119 ? (a) \( 68 \% \) (Type an integer or a decimal.) (b) \( \square \% \) (Type an integer or a decimal.)

Ask by Salinas Adkins. in the United States
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- (a) \( 68\% \) - (b) \( 0.3\% \) - (c) \( 16\% \)

Solución

To solve the problem using the empirical rule, we need to understand the distribution of IQ scores, which is bell-shaped (normal distribution) with a mean (\( \mu \)) of 100 and a standard deviation (\( \sigma \)) of 19. ### Empirical Rule Overview The empirical rule states that for a normal distribution: - Approximately \( 68\% \) of the data falls within one standard deviation of the mean (\( \mu \pm \sigma \)). - Approximately \( 95\% \) of the data falls within two standard deviations of the mean (\( \mu \pm 2\sigma \)). - Approximately \( 99.7\% \) of the data falls within three standard deviations of the mean (\( \mu \pm 3\sigma \)). ### Given Information - Mean (\( \mu \)) = 100 - Standard Deviation (\( \sigma \)) = 19 ### (a) Percentage of people with IQ scores between 81 and 119 To find the percentage of people with IQ scores between 81 and 119, we calculate: - Lower bound: \( 81 = 100 - 19 \) (which is \( \mu - \sigma \)) - Upper bound: \( 119 = 100 + 19 \) (which is \( \mu + \sigma \)) According to the empirical rule, approximately \( 68\% \) of the data falls within one standard deviation of the mean. **Answer for (a):** \( 68\% \) ### (b) Percentage of people with IQ scores less than 43 or greater than 157 First, we calculate the z-scores for these values: - For \( 43 \): \[ z = \frac{43 - 100}{19} \approx -3 \] - For \( 157 \): \[ z = \frac{157 - 100}{19} \approx 3 \] According to the empirical rule, approximately \( 99.7\% \) of the data falls within three standard deviations of the mean. Therefore, the percentage of people outside this range (less than 43 or greater than 157) is: \[ 100\% - 99.7\% = 0.3\% \] **Answer for (b):** \( 0.3\% \) ### (c) Percentage of people with IQ scores greater than 119 Since \( 119 \) is one standard deviation above the mean, we know that: - \( 68\% \) of the data is between \( 81 \) and \( 119 \). - Therefore, \( 32\% \) of the data is outside this range (i.e., \( 16\% \) below \( 81 \) and \( 16\% \) above \( 119 \)). Thus, the percentage of people with IQ scores greater than \( 119 \) is \( 16\% \). **Answer for (c):** \( 16\% \) ### Summary of Answers - (a) \( 68\% \) - (b) \( 0.3\% \) - (c) \( 16\% \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The empirical rule states that in a normal distribution, approximately 68% of the data falls within one standard deviation of the mean. Given a mean of 100 and a standard deviation of 19, the range from 81 (100 - 19) to 119 (100 + 19) indeed captures that 68% of people have IQ scores within this range. Now, for those IQ scores less than 43 or greater than 157, both of these values fall beyond three standard deviations from the mean (43 is 3 standard deviations below, and 157 is 3 standard deviations above). By the empirical rule, about 99.7% of the population falls within 3 standard deviations, so the percentage outside this range would be \(100\% - 99.7\% = 0.3\%\). Thus, fill in the blank with \( 0.3 \% \). For those with IQ scores greater than 119, since that marks one standard deviation above the mean, according to the rule, 68% fall between 81 and 119, leaving about 32% (100% - 68%) outside that range. For a two-tailed distribution, this means half (or 16%) would be above 119. So, the final percentages are 68% for (a) and 0.3% for (b).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad