Pregunta
upstudy study bank question image url

Practice Question 5.2 \( \begin{array}{l}\text { (a) Express } 3 x^{2}+x-3 \text { in the form } a(x-h)^{2}+k \text {, where } a, h \text { and } k \text { are constants. } \\ \text { since positive } 3\left(x^{2}+\right.\end{array} \)

Ask by Carlson Mullins. in Singapore
Jan 14,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( 3x^{2} + x - 3 = 3\left(x + \frac{1}{6}\right)^{2} - \frac{37}{12} \)

Solución

To express the quadratic expression \( 3x^{2} + x - 3 \) in the form \( a(x - h)^{2} + k \), we'll complete the square. Here's a step-by-step guide: ### Step 1: Factor out the Coefficient of \( x^{2} \) Start by factoring out the coefficient of \( x^{2} \) (which is 3) from the first two terms: \[ 3x^{2} + x - 3 = 3\left(x^{2} + \frac{1}{3}x\right) - 3 \] ### Step 2: Complete the Square Inside the Parentheses To complete the square for the expression inside the parentheses, follow these steps: 1. **Identify the Coefficient of \( x \):** The coefficient of \( x \) inside the parentheses is \( \frac{1}{3} \). 2. **Calculate Half of This Coefficient and Square It:** \[ \left(\frac{1}{3} \div 2\right)^{2} = \left(\frac{1}{6}\right)^{2} = \frac{1}{36} \] 3. **Add and Subtract This Square Inside the Parentheses:** \[ 3\left(x^{2} + \frac{1}{3}x + \frac{1}{36} - \frac{1}{36}\right) - 3 \] Simplify the expression inside the parentheses: \[ 3\left(\left(x + \frac{1}{6}\right)^{2} - \frac{1}{36}\right) - 3 \] ### Step 3: Distribute and Simplify Now, distribute the 3 and simplify the constants: \[ 3\left(x + \frac{1}{6}\right)^{2} - 3 \cdot \frac{1}{36} - 3 = 3\left(x + \frac{1}{6}\right)^{2} - \frac{1}{12} - 3 \] Combine the constant terms: \[ - \frac{1}{12} - 3 = - \frac{1}{12} - \frac{36}{12} = - \frac{37}{12} \] ### Final Form Putting it all together, the expression in the desired form is: \[ 3x^{2} + x - 3 = 3\left(x + \frac{1}{6}\right)^{2} - \frac{37}{12} \] **Therefore,** \[ 3x^{2} + x - 3 = 3\left(x - \left(-\frac{1}{6}\right)\right)^{2} - \frac{37}{12} \] ### Summary - **\( a = 3 \)** - **\( h = -\frac{1}{6} \)** - **\( k = -\frac{37}{12} \)** So, the quadratic expression \( 3x^{2} + x - 3 \) is expressed in vertex form as: \[ 3\left(x - \left(-\frac{1}{6}\right)\right)^{2} - \frac{37}{12} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To express the quadratic \(3x^2 + x - 3\) in the form \(a(x-h)^2 + k\), we start with completing the square. First, factor out the 3 from the \(x\) terms: \[ 3\left(x^2 + \frac{1}{3}x\right) - 3. \] Now, to complete the square inside the parentheses, take half of \(\frac{1}{3}\), which is \(\frac{1}{6}\), square it to get \(\frac{1}{36}\), and add/subtract this inside the square: \[ 3\left(x^2 + \frac{1}{3}x + \frac{1}{36} - \frac{1}{36}\right) - 3. \] This simplifies to: \[ 3\left(\left(x + \frac{1}{6}\right)^2 - \frac{1}{36}\right) - 3, \] which becomes: \[ 3\left(x + \frac{1}{6}\right)^2 - \frac{1}{12} - 3. \] Combining the constants gives: \[ 3\left(x + \frac{1}{6}\right)^2 - \frac{37}{12}. \] Thus, the constants are \(a = 3\), \(h = -\frac{1}{6}\), and \(k = -\frac{37}{12}\). For practice and deeper understanding, exploring transformations of quadratic functions can be beneficial. Try graphing \(3x^2 + x - 3\) and its vertex form. Understanding how the vertex changes with \(h\) and \(k\) is crucial for mastering quadratics! Remember that when completing the square, one common mistake is forgetting to properly balance the equation after adding the constant. Always ensure you add and subtract the same number to maintain equality! This tip is vital to avoid errors during transformation into vertex form.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad