Find the vertices of the ellipse defined by the \( \frac{(x-4)^{2}}{9}+\frac{(y-2)^{2}}{16}=1 \). If necessary, round to
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
The given equation of the ellipse is \(\frac{(x-4)^{2}}{9}+\frac{(y-2)^{2}}{16}=1\). Here, we can identify the center of the ellipse at the point \((4, 2)\). The lengths of the semi-major and semi-minor axes can be found from the denominators: the semi-major axis is \(4\) (since \(16 = 4^2\)) and the semi-minor axis is \(3\) (since \(9 = 3^2\)). To find the vertices, we start from the center \((4, 2)\). The vertices along the major axis (vertical direction) are at \((4, 2 + 4) = (4, 6)\) and \((4, 2 - 4) = (4, -2)\). The vertices along the minor axis (horizontal direction) are at \((4 + 3, 2) = (7, 2)\) and \((4 - 3, 2) = (1, 2)\). Thus, the vertices of the ellipse are \((4, 6)\), \((4, -2)\), \((7, 2)\), and \((1, 2)\).