Pregunta
Tell whether the ratios form a proportion. Explain your answer. \( \begin{array}{ll}\text { 7. } \frac{56}{20}, \frac{24}{10} & 8 . \frac{5}{8}, \frac{42.5}{68}\end{array} \)
Ask by Thornton Bush. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
Problem 7: The ratios \( \frac{56}{20} \) and \( \frac{24}{10} \) do **not** form a proportion.
Problem 8: The ratios \( \frac{5}{8} \) and \( \frac{42.5}{68} \) **do** form a proportion.
Solución
To determine whether the given pairs of ratios form a proportion, we need to check if the two ratios in each pair are equivalent. Two ratios \( \frac{a}{b} \) and \( \frac{c}{d} \) form a proportion if \( a \times d = b \times c \) or if they simplify to the same value.
Let's analyze each pair:
---
### **Problem 7**
**Ratios:** \( \frac{56}{20} \) and \( \frac{24}{10} \)
**Simplification:**
1. **Simplify each ratio:**
- \( \frac{56}{20} = \frac{56 \div 4}{20 \div 4} = \frac{14}{5} = 2.8 \)
- \( \frac{24}{10} = \frac{24 \div 2}{10 \div 2} = \frac{12}{5} = 2.4 \)
2. **Compare the simplified values:**
- \( 2.8 \) vs. \( 2.4 \) → **Not equal**
3. **Alternatively, cross-multiply to verify:**
- \( 56 \times 10 = 560 \)
- \( 20 \times 24 = 480 \)
- Since \( 560 \neq 480 \), the ratios are **not equivalent**.
**Conclusion:**
The ratios \( \frac{56}{20} \) and \( \frac{24}{10} \) **do not form a proportion** because they are not equivalent.
---
### **Problem 8**
**Ratios:** \( \frac{5}{8} \) and \( \frac{42.5}{68} \)
**Simplification:**
1. **Simplify each ratio:**
- \( \frac{5}{8} = 0.625 \)
- \( \frac{42.5}{68} \)
2. **Simplify \( \frac{42.5}{68} \):**
- Recognize that \( 42.5 = 5 \times 8.5 \) and \( 68 = 8 \times 8.5 \)
- So, \( \frac{42.5}{68} = \frac{5 \times 8.5}{8 \times 8.5} = \frac{5}{8} = 0.625 \)
3. **Compare the simplified values:**
- \( 0.625 \) vs. \( 0.625 \) → **Equal**
4. **Alternatively, cross-multiply to verify:**
- \( 5 \times 68 = 340 \)
- \( 8 \times 42.5 = 340 \)
- Since \( 340 = 340 \), the ratios are **equivalent**.
**Conclusion:**
The ratios \( \frac{5}{8} \) and \( \frac{42.5}{68} \) **form a proportion** because they are equivalent.
---
**Summary:**
- **Problem 7:** The ratios do **not** form a proportion.
- **Problem 8:** The ratios **do** form a proportion.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To check if the ratios form a proportion, we need to see if the cross-products are equal. For the first pair, calculate \(56 \times 10\) and \(20 \times 24\): - \(56 \times 10 = 560\) - \(20 \times 24 = 480\) Since \(560 \neq 480\), the first pair does not form a proportion. For the second pair, calculate \(5 \times 68\) and \(8 \times 42.5\): - \(5 \times 68 = 340\) - \(8 \times 42.5 = 340\) Since \(340 = 340\), the second pair does form a proportion. In summary, while the first sets of ratios do not form a proportion, the second does!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium