Pregunta
upstudy study bank question image url

DIFFERENCE BETWEEN SQUARES \( \begin{array}{l}x^{2}-1 \\ \frac{a^{4}}{16}-\frac{1}{25} b^{2} \\ x^{2 a}-1\end{array} \begin{array}{l}x^{2}\left(a^{2}-9\right)+y^{2}\left(-a^{2}+9\right)\end{array} \)

Ask by Schofield Mcfarlane. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The difference of squares can be used to factor expressions of the form \( a^2 - b^2 \) into \( (a + b)(a - b) \). Applying this to the given expressions: 1. \( x^{2} - 1 = (x + 1)(x - 1) \) 2. \( \frac{a^{4}}{16} - \frac{1}{25} b^{2} = \left( \frac{a^{2}}{4} + \frac{b}{5} \right) \left( \frac{a^{2}}{4} - \frac{b}{5} \right) \) 3. \( x^{2a} - 1 = (x^{a} + 1)(x^{a} - 1) \) 4. \( x^{2}(a^{2} - 9) + y^{2}(-a^{2} + 9) = (a + 3)(a - 3)(x + y)(x - y) \) These factorizations simplify the original expressions by breaking them down into their constituent parts.

Solución

The **difference of squares** is a fundamental algebraic identity that allows us to factor expressions of the form \( a^2 - b^2 \) into \( (a + b)(a - b) \). This technique is widely used to simplify and solve various algebraic expressions. Let's apply this method to each of the given expressions. --- ### 1. \( x^{2} - 1 \) **Step 1:** Recognize the expression as a difference of squares. \[ x^{2} - 1 = x^{2} - 1^{2} \] **Step 2:** Apply the difference of squares formula. \[ x^{2} - 1 = (x + 1)(x - 1) \] --- ### 2. \( \frac{a^{4}}{16} - \frac{1}{25} b^{2} \) **Step 1:** Rewrite each term as a square. \[ \frac{a^{4}}{16} = \left( \frac{a^{2}}{4} \right)^{2}, \quad \frac{1}{25} b^{2} = \left( \frac{b}{5} \right)^{2} \] **Step 2:** Express the original expression as a difference of squares. \[ \frac{a^{4}}{16} - \frac{1}{25} b^{2} = \left( \frac{a^{2}}{4} \right)^{2} - \left( \frac{b}{5} \right)^{2} \] **Step 3:** Apply the difference of squares formula. \[ \frac{a^{4}}{16} - \frac{1}{25} b^{2} = \left( \frac{a^{2}}{4} + \frac{b}{5} \right) \left( \frac{a^{2}}{4} - \frac{b}{5} \right) \] **Optional:** To simplify further, you can find a common denominator for each factor. \[ \left( \frac{5a^{2} + 4b}{20} \right)\left( \frac{5a^{2} - 4b}{20} \right) = \frac{(5a^{2} + 4b)(5a^{2} - 4b)}{400} \] --- ### 3. \( x^{2a} - 1 \) **Step 1:** Recognize the expression as a difference of squares by identifying \( x^{a} \) as the base. \[ x^{2a} - 1 = \left( x^{a} \right)^{2} - 1^{2} \] **Step 2:** Apply the difference of squares formula. \[ x^{2a} - 1 = \left( x^{a} + 1 \right) \left( x^{a} - 1 \right) \] --- ### 4. \( x^{2}(a^{2} - 9) + y^{2}(-a^{2} + 9) \) **Step 1:** Simplify the expression by factoring out common terms. \[ x^{2}(a^{2} - 9) + y^{2}(-a^{2} + 9) = x^{2}(a^{2} - 9) - y^{2}(a^{2} - 9) = (a^{2} - 9)(x^{2} - y^{2}) \] **Step 2:** Notice that both \( a^{2} - 9 \) and \( x^{2} - y^{2} \) are differences of squares. \[ a^{2} - 9 = a^{2} - 3^{2} = (a + 3)(a - 3) \] \[ x^{2} - y^{2} = (x + y)(x - y) \] **Step 3:** Combine the factorizations. \[ x^{2}(a^{2} - 9) + y^{2}(-a^{2} + 9) = (a + 3)(a - 3)(x + y)(x - y) \] --- By systematically applying the difference of squares formula, we've successfully factored each of the given expressions into simpler, multiplicative forms.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that the difference of squares, expressed as \(a^2 - b^2\), can be factored into \((a - b)(a + b)? This nifty little formula is derived from algebraic identities and can simplify polynomial problems significantly. For instance, in the expression \(x^2 - 1\), recognizing it as a difference of squares allows us to factor it as \((x - 1)(x + 1)\), simplifying the problem instantly. In real-world applications, the concept of factoring differences of squares can help with various calculations in fields such as physics and engineering, where simplifying equations is often necessary. For example, if you're dealing with trajectories in physics, being able to quickly identify and factor out differences of squares can lead to faster solutions when calculating the intersection points of quadratic functions. Just think of it as your secret weapon in algebraic warfare!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad