Responder
The difference of squares can be used to factor expressions of the form \( a^2 - b^2 \) into \( (a + b)(a - b) \). Applying this to the given expressions:
1. \( x^{2} - 1 = (x + 1)(x - 1) \)
2. \( \frac{a^{4}}{16} - \frac{1}{25} b^{2} = \left( \frac{a^{2}}{4} + \frac{b}{5} \right) \left( \frac{a^{2}}{4} - \frac{b}{5} \right) \)
3. \( x^{2a} - 1 = (x^{a} + 1)(x^{a} - 1) \)
4. \( x^{2}(a^{2} - 9) + y^{2}(-a^{2} + 9) = (a + 3)(a - 3)(x + y)(x - y) \)
These factorizations simplify the original expressions by breaking them down into their constituent parts.
Solución
The **difference of squares** is a fundamental algebraic identity that allows us to factor expressions of the form \( a^2 - b^2 \) into \( (a + b)(a - b) \). This technique is widely used to simplify and solve various algebraic expressions. Let's apply this method to each of the given expressions.
---
### 1. \( x^{2} - 1 \)
**Step 1:** Recognize the expression as a difference of squares.
\[
x^{2} - 1 = x^{2} - 1^{2}
\]
**Step 2:** Apply the difference of squares formula.
\[
x^{2} - 1 = (x + 1)(x - 1)
\]
---
### 2. \( \frac{a^{4}}{16} - \frac{1}{25} b^{2} \)
**Step 1:** Rewrite each term as a square.
\[
\frac{a^{4}}{16} = \left( \frac{a^{2}}{4} \right)^{2}, \quad \frac{1}{25} b^{2} = \left( \frac{b}{5} \right)^{2}
\]
**Step 2:** Express the original expression as a difference of squares.
\[
\frac{a^{4}}{16} - \frac{1}{25} b^{2} = \left( \frac{a^{2}}{4} \right)^{2} - \left( \frac{b}{5} \right)^{2}
\]
**Step 3:** Apply the difference of squares formula.
\[
\frac{a^{4}}{16} - \frac{1}{25} b^{2} = \left( \frac{a^{2}}{4} + \frac{b}{5} \right) \left( \frac{a^{2}}{4} - \frac{b}{5} \right)
\]
**Optional:** To simplify further, you can find a common denominator for each factor.
\[
\left( \frac{5a^{2} + 4b}{20} \right)\left( \frac{5a^{2} - 4b}{20} \right) = \frac{(5a^{2} + 4b)(5a^{2} - 4b)}{400}
\]
---
### 3. \( x^{2a} - 1 \)
**Step 1:** Recognize the expression as a difference of squares by identifying \( x^{a} \) as the base.
\[
x^{2a} - 1 = \left( x^{a} \right)^{2} - 1^{2}
\]
**Step 2:** Apply the difference of squares formula.
\[
x^{2a} - 1 = \left( x^{a} + 1 \right) \left( x^{a} - 1 \right)
\]
---
### 4. \( x^{2}(a^{2} - 9) + y^{2}(-a^{2} + 9) \)
**Step 1:** Simplify the expression by factoring out common terms.
\[
x^{2}(a^{2} - 9) + y^{2}(-a^{2} + 9) = x^{2}(a^{2} - 9) - y^{2}(a^{2} - 9) = (a^{2} - 9)(x^{2} - y^{2})
\]
**Step 2:** Notice that both \( a^{2} - 9 \) and \( x^{2} - y^{2} \) are differences of squares.
\[
a^{2} - 9 = a^{2} - 3^{2} = (a + 3)(a - 3)
\]
\[
x^{2} - y^{2} = (x + y)(x - y)
\]
**Step 3:** Combine the factorizations.
\[
x^{2}(a^{2} - 9) + y^{2}(-a^{2} + 9) = (a + 3)(a - 3)(x + y)(x - y)
\]
---
By systematically applying the difference of squares formula, we've successfully factored each of the given expressions into simpler, multiplicative forms.
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución