Pregunta
upstudy study bank question image url

Which equation represents an exponential function that passes through the point \( (2,80) \) ? \( f(x)=4(x)^{5} \) \( f(x)=5(x)^{4} \) \( f(x)=4(5)^{x} \) \( f(x)=5(4)^{x} \)

Ask by Collins Cruz. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct equation is \( f(x) = 5 \cdot 4^x \).

Solución

To determine which equation represents an exponential function that passes through the point \( (2, 80) \), let's analyze each option: 1. **\( f(x) = 4x^5 \)** - This is a polynomial function, not an exponential function. 2. **\( f(x) = 5x^4 \)** - This is also a polynomial function, not an exponential function. 3. **\( f(x) = 4 \cdot 5^x \)** - This is an exponential function. Let's check if it passes through \( (2, 80) \): \[ f(2) = 4 \cdot 5^2 = 4 \cdot 25 = 100 \neq 80 \] - It does **not** pass through the point. 4. **\( f(x) = 5 \cdot 4^x \)** - This is an exponential function. Let's check if it passes through \( (2, 80) \): \[ f(2) = 5 \cdot 4^2 = 5 \cdot 16 = 80 \] - It **does** pass through the point \( (2, 80) \). **Therefore, the correct equation is:** \[ f(x) = 5 \cdot 4^x \] **Answer:** \( f(x)=5(4)^{x} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To identify the exponential function that passes through the point \( (2,80) \), we can substitute \( x = 2 \) into each equation and see which one yields \( f(2) = 80 \). 1. For \( f(x) = 4(5)^{x} \): \[ f(2) = 4(5)^{2} = 4 \times 25 = 100 \quad (\text{not } 80) \] 2. For \( f(x) = 5(4)^{x} \): \[ f(2) = 5(4)^{2} = 5 \times 16 = 80 \quad (\text{correct choice}) \] The equation \( f(x) = 5(4)^{x} \) represents the exponential function that passes through the point \( (2,80) \). Throughout history, exponential functions have helped in modeling various phenomena like population growth and radioactivity decay. Mathematician Jacob Bernoulli was one of the first to study compound interest scenarios, leading to the natural logarithm, which is a key to understanding growth rates. In real-world applications, exponential functions are everywhere! From calculating compound interest in finance, to measuring the spread of diseases in epidemiology, these functions provide insights into predictability and the potential for dramatic growth or decline. Always check your initial values and consider the context of the problem to avoid common pitfalls!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad