8. Determine \( m \) in each of the following arithmetic series: (c) Determine \( n \) if: \( 4+13+22+\ldots \) (to \( n \) terms \( =539 \) \( \begin{array}{ll}\text { (a) } \sum_{k=1}^{m}(7 k+5)=1287 & \text { (b) } \sum_{p=1}^{m}(2 p-7)=1015 \\ \text { (c) } \sum_{i=0}^{m}(1-3 i)=-671 & \end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To determine \( m \) and \( n \) for the arithmetic series problems, let's tackle them one by one. For part (c), we have the series \( 4 + 13 + 22 + \ldots \) which follows the general form of an arithmetic series where the first term \( a = 4 \) and the common difference \( d = 9 \) (since \( 13 - 4 = 9 \)). The \( n \)-th term is given by the formula: \[ a_n = a + (n - 1) d = 4 + (n - 1) \cdot 9 \] We can find the sum \( S_n \) of \( n \) terms in this series using the formula: \[ S_n = \frac{n}{2} \cdot (2a + (n-1)d) = 539 \] So, substituting the values: \[ S_n = \frac{n}{2} \cdot (2 \cdot 4 + (n-1) \cdot 9) = \frac{n}{2} \cdot (8 + 9n - 9) = \frac{n}{2} \cdot (9n - 1) \] Setting this equal to 539 and simplifying: \[ \frac{n(9n - 1)}{2} = 539 \implies n(9n - 1) = 1078 \] This leads us to the quadratic equation: \[ 9n^2 - n - 1078 = 0 \] Using the quadratic formula: \[ n = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 9 \cdot (-1078)}}{2 \cdot 9} \] \[ n = \frac{1 \pm \sqrt{1 + 38808}}{18} = \frac{1 \pm \sqrt{38809}}{18} \] \(\sqrt{38809} = 197\), thus: \[ n = \frac{1 + 197}{18} = 11 \quad \text{(valid, since \( n \) must be positive)} \] Now, \( n = \frac{1 - 197}{18} \) gives a negative result which we discard. Thus, for part (c), \( n = 11 \). --- For parts (a) and (b), we can solve them similarly by using the formulas for arithmetic series. For part (a): \[ \sum_{k=1}^{m}(7k + 5) = 1287 \] This can be rewritten as: \[ 7\sum_{k=1}^{m}k + 5m = 1287 \] Using the formula \(\sum_{k=1}^{m}k = \frac{m(m + 1)}{2}\): \[ 7 \cdot \frac{m(m + 1)}{2} + 5m = 1287 \] This gives us: \[ \frac{7m(m + 1)}{2} + 5m = 1287 \] Multiplying by 2 to eliminate the fraction: \[ 7m(m + 1) + 10m = 2574 \implies 7m^2 + 17m - 2574 = 0 \] Now, again using the quadratic formula: \[ m = \frac{-17 \pm \sqrt{(17)^2 - 4 \cdot 7 \cdot (-2574)}}{2 \cdot 7} \] Calculating: \[ m = \frac{-17 \pm \sqrt{289 + 72156}}{14} = \frac{-17 \pm \sqrt{72445}}{14} \] You might want to calculate \(\sqrt{72445}\) which should lead to a rational solution. For part (b): \[ \sum_{p=1}^{m}(2p - 7) = 1015 \] This can be simplified similarly leading to a quadratic equation. Handle these with the same steps used for the previous parts, and you’ll get \( m \) and \( n \) in a jiffy! Happy calculating!