Pregunta
upstudy study bank question image url

6. \( \frac{a+3}{a-5} \div \frac{a+1}{a^{2}-2 a-15} \) a. \( \frac{(a+3)(a+3)}{a+1}, a \neq-3,-1 \) c. \( \frac{(a+3)(a+3)}{a+1}, a \neq 5,-1,-3 \) b. \( \frac{(a+3)(a+1)}{(a-5)^{2}(a+3)}, a \neq 5,-3 \) d. \( \frac{(a+3)(a+1)}{(a-5)^{2}(a+3)}, a \neq 5,-3,-1 \) 7. \( \frac{x^{2}-4}{x-8} \div(x-2) \) a. \( \frac{(x-2)(x+2)}{x-8} \) c. \( \frac{x-2}{x-8} \) b. \( \frac{x-8}{x+2} \) d. \( \frac{x+2}{x-8} \) 8. \( \frac{6}{x^{2}-9}-\frac{1}{x-3}=1 \) a. \( \quad-4 \) b. 3 or -4 c. \( \frac{-1 \pm \sqrt{73}}{2} \) d. 2 9. \( \frac{2}{5 c}+\frac{1}{4 c}=-6 \) a. \( -\frac{7}{60} \) b. \( \frac{13}{20} \) c. \( -\frac{13}{120} \) d. \( -\frac{1}{18} \) 10. \( \frac{1}{x-3}=\frac{-1}{x-1} \) a. 2 b. \( \frac{3}{2} \) c. 4 d. \( \frac{5}{2} \)

Ask by Hobbs Knight. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

6. \( \frac{(a+3)(a+3)}{a+1}, a \neq 5, -3, -1 \) 7. \( \frac{x+2}{x-8} \) 8. \( -4 \) 9. \( -\frac{13}{120} \) 10. \( 2 \)

Solución

Let's solve each problem step by step. ### Problem 6: \[ \frac{a+3}{a-5} \div \frac{a+1}{a^{2}-2 a-15} \] **Step 1: Rewrite the division as multiplication by the reciprocal.** \[ \frac{a+3}{a-5} \times \frac{a^{2}-2a-15}{a+1} \] **Step 2: Factor the quadratic expression \(a^{2}-2a-15\).** To factor \(a^{2}-2a-15\), we look for two numbers that multiply to \(-15\) and add to \(-2\). These numbers are \(-5\) and \(3\). \[ a^{2}-2a-15 = (a-5)(a+3) \] **Step 3: Substitute the factored form back into the expression.** \[ \frac{a+3}{a-5} \times \frac{(a-5)(a+3)}{a+1} \] **Step 4: Cancel common factors.** The \((a-5)\) in the numerator and denominator cancels out: \[ \frac{(a+3)(a+3)}{a+1} \] **Step 5: State the restrictions.** The restrictions come from the original denominators: - \(a \neq 5\) (from \(a-5\)) - \(a \neq -3\) (from \(a+3\)) - \(a \neq -1\) (from \(a+1\)) Thus, the final answer is: \[ \frac{(a+3)(a+3)}{a+1}, \quad a \neq 5, -3, -1 \] ### Problem 7: \[ \frac{x^{2}-4}{x-8} \div (x-2) \] **Step 1: Rewrite the division as multiplication by the reciprocal.** \[ \frac{x^{2}-4}{x-8} \times \frac{1}{x-2} \] **Step 2: Factor \(x^{2}-4\) (difference of squares).** \[ x^{2}-4 = (x-2)(x+2) \] **Step 3: Substitute the factored form back into the expression.** \[ \frac{(x-2)(x+2)}{x-8} \times \frac{1}{x-2} \] **Step 4: Cancel the common factor \((x-2)\).** \[ \frac{x+2}{x-8} \] Thus, the final answer is: \[ \frac{x+2}{x-8} \] ### Problem 8: \[ \frac{6}{x^{2}-9}-\frac{1}{x-3}=1 \] **Step 1: Factor \(x^{2}-9\) (difference of squares).** \[ x^{2}-9 = (x-3)(x+3) \] **Step 2: Rewrite the equation.** \[ \frac{6}{(x-3)(x+3)} - \frac{1}{x-3} = 1 \] **Step 3: Find a common denominator.** The common denominator is \((x-3)(x+3)\): \[ \frac{6 - (x+3)}{(x-3)(x+3)} = 1 \] **Step 4: Simplify the numerator.** \[ \frac{6 - x - 3}{(x-3)(x+3)} = 1 \implies \frac{3 - x}{(x-3)(x+3)} = 1 \] **Step 5: Cross-multiply.** \[ 3 - x = (x-3)(x+3) \] **Step 6: Expand and rearrange.** \[ 3 - x = x^2 - 9 \implies x^2 + x - 12 = 0 \] **Step 7: Factor the quadratic.** \[ (x+4)(x-3) = 0 \] **Step 8: Solve for \(x\).** \[ x = -4 \quad \text{or} \quad x = 3 \] **Step 9: Check for extraneous solutions.** Since \(x = 3\) makes the denominator zero, we discard it. Thus, the solution is: \[ x = -4 \] ### Problem 9: \[ \frac{2}{5c}+\frac{1}{4c}=-6 \] **Step 1: Find a common denominator.** The common denominator is \(20c\): \[ \frac{8}{20c} + \frac{5}{20c} = -6 \] **Step 2: Combine the fractions.** \[ \frac{13}{20c} = -6 \] **Step 3: Cross-multiply.** \[ 13 = -120c \implies c = -\frac{13}{120} \] Thus, the final answer is: \[ c = -\frac{13}{120} \] ### Problem 10: \[ \frac{1}{x-3}=\frac{-1}{x-1} \] **Step 1: Cross-multiply.** \[ 1 \cdot (x-1) = -1 \cdot (x-3) \] **Step 2: Expand both sides.** \[ x - 1 = -x + 3 \] **Step 3: Rearrange the equation.** \[ 2x = 4 \implies x = 2 \] Thus, the final answer is: \[ x = 2 \] ### Summary of Answers: 6. \( \frac{(a+3)(a+3)}{a+1}, a \neq 5, -3, -1 \) 7. \( \frac{x+2}{x-8} \) 8. \( -4 \) 9. \( -\frac{13}{120} \) 10. \( 2 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Understanding rational expressions and the operations you can perform with them can feel like a trek through mathematical history! Rational expressions date back centuries and were used by ancient mathematicians, such as the Egyptians, who already manipulated fractions in the context of trade. Fast forward to today, and these skills are just as crucial for algebra and calculus, circumventing the pitfalls that students often experience when factoring and simplifying. When dividing rational expressions, always remember to multiply by the reciprocal of the divisor! This helps avoid common mistakes like incorrectly canceling terms. Additionally, be fully aware of restrictions on the variable values to prevent division by zero. These principles ensure your algebraic journey stays smooth while dodging those pesky mathematical potholes. Happy simplifying!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad