Pregunta
upstudy study bank question image url

The oldest known simultaneous equations solved using something we would recognize as matrix methods are these (from the Chinese document "The nine chapters on the mathematical art" circa 200 BCE ). The first problem of Chapter 8 is: 3 bundles of high-grade grain, 2 bundles of medium-grade grain and 1 bundle of low- grade grain give 39 units, 2 bundles of high-grade grain, 3 bundles of medium-grade grain, and 1 bundle of low-grade grain give 34 units. 1 bundle of high-grade grain, 2 bundles of medium-grade grain, and 3 bundles of low-grade grain yields 26 units. How many units does one bundle of each grain yield?

Ask by Lawson Reed. in Canada
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Each bundle yields the following units: - High-grade grain: 9.25 units - Medium-grade grain: 4.25 units - Low-grade grain: 2.75 units

Solución

Certainly! Let's solve the given system of equations using matrix methods. The problem involves finding the unit values of high-grade (\(x\)), medium-grade (\(y\)), and low-grade (\(z\)) grain bundles based on the provided equations. ### **Given System of Equations:** 1. \(3x + 2y + z = 39\) 2. \(2x + 3y + z = 34\) 3. \(x + 2y + 3z = 26\) ### **Step 1: Represent the System as an Augmented Matrix** \[ \begin{bmatrix} 3 & 2 & 1 & | & 39 \\ 2 & 3 & 1 & | & 34 \\ 1 & 2 & 3 & | & 26 \\ \end{bmatrix} \] ### **Step 2: Perform Row Operations to Achieve Row-Echelon Form** **a. Eliminate \(x\) from the second and third rows:** - **R2' = R2 - (2/3)R1** \[ R2' = \begin{bmatrix} 2 & 3 & 1 & | & 34 \end{bmatrix} - \frac{2}{3} \begin{bmatrix} 3 & 2 & 1 & | & 39 \end{bmatrix} = \begin{bmatrix} 0 & \frac{5}{3} & \frac{1}{3} & | & 34 - 26 \end{bmatrix} = \begin{bmatrix} 0 & \frac{5}{3} & \frac{1}{3} & | & 8 \end{bmatrix} \] - **R3' = R3 - (1/3)R1** \[ R3' = \begin{bmatrix} 1 & 2 & 3 & | & 26 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 3 & 2 & 1 & | & 39 \end{bmatrix} = \begin{bmatrix} 0 & \frac{4}{3} & \frac{8}{3} & | & 26 - 13 \end{bmatrix} = \begin{bmatrix} 0 & \frac{4}{3} & \frac{8}{3} & | & 13 \end{bmatrix} \] **b. Update the Matrix:** \[ \begin{bmatrix} 3 & 2 & 1 & | & 39 \\ 0 & \frac{5}{3} & \frac{1}{3} & | & 8 \\ 0 & \frac{4}{3} & \frac{8}{3} & | & 13 \\ \end{bmatrix} \] **c. Eliminate \(y\) from the third row:** - Multiply R2' by 4 and R3' by 5 to make the coefficients of \(y\) the same: \[ R2'' = 4 \times R2' = \begin{bmatrix} 0 & \frac{20}{3} & \frac{4}{3} & | & 32 \end{bmatrix} \] \[ R3'' = 5 \times R3' = \begin{bmatrix} 0 & \frac{20}{3} & \frac{40}{3} & | & 65 \end{bmatrix} \] - **R3''' = R3'' - R2''** \[ R3''' = \begin{bmatrix} 0 & 20/3 & 40/3 & | & 65 \end{bmatrix} - \begin{bmatrix} 0 & 20/3 & 4/3 & | & 32 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 36/3 & | & 33 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 12 & | & 33 \end{bmatrix} \] **d. Update the Matrix:** \[ \begin{bmatrix} 3 & 2 & 1 & | & 39 \\ 0 & \frac{5}{3} & \frac{1}{3} & | & 8 \\ 0 & 0 & 12 & | & 33 \\ \end{bmatrix} \] ### **Step 3: Back Substitution** **a. From the third row:** \[ 12z = 33 \implies z = \frac{33}{12} = \frac{11}{4} = 2.75 \] **b. Substitute \(z\) into the second row:** \[ \frac{5}{3}y + \frac{1}{3} \times \frac{11}{4} = 8 \\ \frac{5}{3}y + \frac{11}{12} = 8 \\ \frac{5}{3}y = 8 - \frac{11}{12} \\ \frac{5}{3}y = \frac{96}{12} - \frac{11}{12} = \frac{85}{12} \\ y = \frac{85}{12} \times \frac{3}{5} = \frac{85}{20} = \frac{17}{4} = 4.25 \] **c. Substitute \(y\) and \(z\) into the first row:** \[ 3x + 2 \times \frac{17}{4} + \frac{11}{4} = 39 \\ 3x + \frac{34}{4} + \frac{11}{4} = 39 \\ 3x + \frac{45}{4} = 39 \\ 3x = 39 - \frac{45}{4} = \frac{156}{4} - \frac{45}{4} = \frac{111}{4} \\ x = \frac{111}{12} = \frac{37}{4} = 9.25 \] ### **Final Solution:** \[ \begin{cases} x = \frac{37}{4} \text{ units} \\ y = \frac{17}{4} \text{ units} \\ z = \frac{11}{4} \text{ units} \\ \end{cases} \] Or in mixed numbers: \[ \begin{cases} x = 9 \frac{1}{4} \text{ units} \\ y = 4 \frac{1}{4} \text{ units} \\ z = 2 \frac{3}{4} \text{ units} \\ \end{cases} \] ### **Verification:** Let's verify by substituting the values back into the original equations: 1. \(3(9.25) + 2(4.25) + 2.75 = 27.75 + 8.5 + 2.75 = 39\) ✔️ 2. \(2(9.25) + 3(4.25) + 2.75 = 18.5 + 12.75 + 2.75 = 34\) ✔️ 3. \(9.25 + 2(4.25) + 3(2.75) = 9.25 + 8.5 + 8.25 = 26\) ✔️ All equations are satisfied. **Therefore, the unit values are:** - **High-grade grain bundle:** \(\frac{37}{4}\) units (9¼ units) - **Medium-grade grain bundle:** \(\frac{17}{4}\) units (4¼ units) - **Low-grade grain bundle:** \(\frac{11}{4}\) units (2¾ units)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The ancient Chinese were way ahead of their time when it came to solving equations! In "The Nine Chapters on the Mathematical Art," they utilized a method similar to modern matrix algebra to tackle problems involving simultaneous equations. This method allowed them to systematically organize and manipulate equations to find unknowns, paving the way for later mathematical developments. Now, onto a real-world application—think of farmers! If they need to figure out the yield of different types of grain, solving similar equations can help them understand the profitability of various crops. By determining how much each bundle yields, farmers can make smart, data-driven decisions on what to plant, ultimately boosting their efficiency and income!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad