Pregunta
Factor completely. If the polynomial is prime, state so. \( 64 x^{3}-y^{3} \)
Ask by Hall Herrera. in the United States
Jan 27,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( 64x^{3} - y^{3} = (4x - y)(16x^{2} + 4xy + y^{2}) \)
Solución
To factor the polynomial \( 64x^{3} - y^{3} \) completely, follow these steps:
1. **Recognize the Difference of Cubes:**
The given polynomial is a difference of cubes since \( 64x^{3} = (4x)^3 \) and \( y^{3} = y^3 \). The general formula for factoring a difference of cubes is:
\[
a^3 - b^3 = (a - b)(a^2 + ab + b^2)
\]
2. **Apply the Formula:**
Let \( a = 4x \) and \( b = y \). Applying the formula:
\[
(4x)^3 - y^3 = (4x - y)\left((4x)^2 + (4x)(y) + y^2\right)
\]
Simplify the expression inside the parentheses:
\[
= (4x - y)(16x^2 + 4xy + y^2)
\]
3. **Check for Further Factorization:**
The quadratic \( 16x^2 + 4xy + y^2 \) can be checked for further factorization. Treating it as a quadratic in \( x \):
\[
16x^2 + 4xy + y^2
\]
Calculate the discriminant:
\[
D = (4y)^2 - 4 \cdot 16 \cdot y^2 = 16y^2 - 64y^2 = -48y^2
\]
Since the discriminant is negative (\( D < 0 \)), the quadratic does not factor further over the real numbers.
4. **Final Factored Form:**
Therefore, the completely factored form of the polynomial is:
\[
64x^{3} - y^{3} = (4x - y)(16x^2 + 4xy + y^2)
\]
Since \( 16x^2 + 4xy + y^2 \) cannot be factored further using real numbers, the expression is fully factored.
**Final Answer:**
\[
64x^{3} - y^{3} = (4x - y)(16x^{2} + 4xy + y^{2})
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To factor \( 64x^3 - y^3 \), we recognize it as a difference of cubes. The formula for factoring a difference of cubes \( a^3 - b^3 \) is \( (a - b)(a^2 + ab + b^2) \). Here, \( a = 4x \) and \( b = y \). Thus, we have: \[ 64x^3 - y^3 = (4x)^3 - y^3 = (4x - y)\left((4x)^2 + (4x)(y) + y^2\right) \] This simplifies to: \[ (4x - y)(16x^2 + 4xy + y^2) \] The polynomial factors completely into \( (4x - y)(16x^2 + 4xy + y^2) \). The second factor, \( 16x^2 + 4xy + y^2 \), cannot be factored further using real numbers, as its discriminant is negative.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium