Pregunta
upstudy study bank question image url

In the following exercise, you will be given the opportunity to recall what happens when you add two linear functions. Given: \( f(x)=2 x+3, g(x)=x+2 \), \( h(x)=x-5, m(x)=-3 x-1 \) 1. \( p(x)=f(x)+g(x) \) a. Write the equation of \( p(x) \). b. In what way is the slope of \( p(x) \) related to the slope of \( f(x) \) and the slope of \( g(x) \) ? (Include increasing or decreasing in your answer. Also identify which function is increasing faster.) c. In what way is the \( y \)-intercept of \( p(x) \) related to the \( y \)-intercepts of \( f(x) \) and of \( g(x) \) ? d. Is \( p(x) \) the equation of a line? Justify your answer.

Ask by Turnbull Estrada. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**1. \( p(x) = f(x) + g(x) \)** a. \( p(x) = 3x + 5 \) b. The slope of \( p(x) \) is the sum of the slopes of \( f(x) \) and \( g(x) \). Both functions are increasing, and \( f(x) \) is increasing faster. c. The \( y \)-intercept of \( p(x) \) is the sum of the \( y \)-intercepts of \( f(x) \) and \( g(x) \). d. Yes, \( p(x) \) is a line because it is in the form \( y = mx + b \).

Solución

Certainly! Let's address each part of the exercise step-by-step. ### **1. \( p(x) = f(x) + g(x) \)** #### **a. Write the equation of \( p(x) \).** To find \( p(x) \), simply add the corresponding expressions of \( f(x) \) and \( g(x) \): \[ \begin{align*} p(x) &= f(x) + g(x) \\ &= (2x + 3) + (x + 2) \\ &= 2x + x + 3 + 2 \\ &= 3x + 5 \end{align*} \] **Answer:** \[ p(x) = 3x + 5 \] --- #### **b. How is the slope of \( p(x) \) related to the slopes of \( f(x) \) and \( g(x) \)? Include increasing or decreasing in your answer. Also, identify which function is increasing faster.** - **Slopes of the Original Functions:** - \( f(x) = 2x + 3 \) has a slope of **2**. - \( g(x) = x + 2 \) has a slope of **1**. - **Slope of \( p(x) \):** - \( p(x) = 3x + 5 \) has a slope of **3**. - **Relationship:** - The slope of \( p(x) \) is the **sum** of the slopes of \( f(x) \) and \( g(x) \). - Since all slopes are positive, all functions are **increasing**. - **Which Function is Increasing Faster:** - \( f(x) \) has a slope of 2, which is **steeper** than \( g(x) \) with a slope of 1. - Therefore, \( f(x) \) is **increasing faster** than \( g(x) \). **Answer:** The slope of \( p(x) \) is the sum of the slopes of \( f(x) \) and \( g(x) \). Since both \( f(x) \) and \( g(x) \) have positive slopes, \( p(x) \) is also increasing. Additionally, \( f(x) \) (slope 2) is increasing faster than \( g(x) \) (slope 1). --- #### **c. How is the \( y \)-intercept of \( p(x) \) related to the \( y \)-intercepts of \( f(x) \) and \( g(x) \)?** - **Y-Intercepts of the Original Functions:** - \( f(x) = 2x + 3 \) has a \( y \)-intercept of **3**. - \( g(x) = x + 2 \) has a \( y \)-intercept of **2**. - **Y-Intercept of \( p(x) \):** - \( p(x) = 3x + 5 \) has a \( y \)-intercept of **5**. - **Relationship:** - The \( y \)-intercept of \( p(x) \) is the **sum** of the \( y \)-intercepts of \( f(x) \) and \( g(x) \). **Answer:** The \( y \)-intercept of \( p(x) \) is the sum of the \( y \)-intercepts of \( f(x) \) and \( g(x) \). Specifically, \( 3 + 2 = 5 \). --- #### **d. Is \( p(x) \) the equation of a line? Justify your answer.** Yes, \( p(x) \) is the equation of a line. - **Reasoning:** - A linear function has the form \( y = mx + b \), where \( m \) is the slope and \( b \) is the \( y \)-intercept. - \( p(x) = 3x + 5 \) fits this form with a slope of 3 and a \( y \)-intercept of 5. **Answer:** Yes, \( p(x) \) is the equation of a line because it is in the form \( y = mx + b \) with a constant slope and \( y \)-intercept.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the equation of \( p(x) \), begin by adding the two functions together: 1. \( p(x) = f(x) + g(x) = (2x + 3) + (x + 2) \). Simplifying this gives: \[ p(x) = 2x + 3 + x + 2 = 3x + 5. \] So, the equation of \( p(x) \) is \( p(x) = 3x + 5 \). For part b, the slope of \( p(x) \) is 3. The slopes of \( f(x) \) and \( g(x) \) are 2 and 1, respectively. Since \( p(x) \)'s slope is the sum of the two, the slopes relate as follows: as both functions have positive slopes, \( p(x) \) is also increasing. Specifically, \( f(x) \) increases faster than \( g(x) \) since it has a larger slope (2 vs. 1). In part c, the \( y \)-intercepts of \( f(x) \) and \( g(x) \) are 3 and 2, respectively. When we find \( p(0) \), which is the \( y \)-intercept of \( p(x) \), we calculate \( p(0) = 3(0) + 5 = 5 \). Therefore, the \( y \)-intercept of \( p(x) \) is the sum of the \( y \)-intercepts of \( f(x) \) and \( g(x) \): \( 3 + 2 = 5 \). For part d, yes, \( p(x) \) is the equation of a line. Any function that can be expressed in the form \( y = mx + b \), where \( m \) is the slope and \( b \) is the \( y \)-intercept, describes a line. Since \( p(x) = 3x + 5 \) fits this format, it is indeed linear!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad