Pregunta
upstudy study bank question image url

Find the individual currents that flow through each of the following resistors: \( R_{1}=30 \Omega, R_{2}=50 \Omega, R_{3}=20 \Omega, R_{4}=40 \Omega \) \( \left(R_{2}\right. \) and \( R_{3} \) are parallel) \( E=60 \mathrm{~V} \)

Ask by Chandler Owen. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The currents through each resistor are: - \( R_1 \): 0.71 A - \( R_2 \): 0.20 A - \( R_3 \): 0.51 A - \( R_4 \): 0.71 A

Solución

To determine the individual currents flowing through each resistor in the given circuit, we'll follow these steps: 1. **Understand the Circuit Configuration:** - **Resistors:** - \( R_1 = 30\,Ω \) - \( R_2 = 50\,Ω \) - \( R_3 = 20\,Ω \) - \( R_4 = 40\,Ω \) - **Configuration Assumption:** - \( R_2 \) and \( R_3 \) are connected in **parallel**. - This parallel combination is connected in series with \( R_1 \) and \( R_4 \). - The entire arrangement is connected to a voltage source \( E = 60\,V \). The circuit can be visualized as: \[ E \rightarrow R_1 \rightarrow (R_2 \parallel R_3) \rightarrow R_4 \rightarrow \text{Return to } E \] 2. **Calculate Equivalent Resistance:** - **Parallel Combination of \( R_2 \) and \( R_3 \):** \[ R_{\text{parallel}} = \frac{R_2 \times R_3}{R_2 + R_3} = \frac{50 \times 20}{50 + 20} = \frac{1000}{70} \approx 14.29\,Ω \] - **Total Resistance in the Circuit:** \[ R_{\text{total}} = R_1 + R_{\text{parallel}} + R_4 = 30 + 14.29 + 40 = 84.29\,Ω \] 3. **Determine the Total Current (\( I_{\text{total}} \)) from the Source:** \[ I_{\text{total}} = \frac{E}{R_{\text{total}}} = \frac{60}{84.29} \approx 0.711\,A \] 4. **Calculate Voltage Drops Across Each Resistor:** - **Voltage Across \( R_1 \):** \[ V_1 = I_{\text{total}} \times R_1 = 0.711 \times 30 \approx 21.43\,V \] - **Voltage Across the Parallel Combination (\( R_2 \) and \( R_3 \)):** \[ V_{\text{parallel}} = I_{\text{total}} \times R_{\text{parallel}} = 0.711 \times 14.29 \approx 10.14\,V \] - **Voltage Across \( R_4 \):** \[ V_4 = I_{\text{total}} \times R_4 = 0.711 \times 40 \approx 28.57\,V \] *(Verification: \( V_1 + V_{\text{parallel}} + V_4 \approx 60\,V \))* 5. **Determine Individual Currents Through Each Resistor:** - **Current Through \( R_2 \):** \[ I_2 = \frac{V_{\text{parallel}}}{R_2} = \frac{10.14}{50} \approx 0.203\,A \] - **Current Through \( R_3 \):** \[ I_3 = \frac{V_{\text{parallel}}}{R_3} = \frac{10.14}{20} \approx 0.507\,A \] - **Current Through \( R_1 \) and \( R_4 \):** \[ I_1 = I_4 = I_{\text{total}} \approx 0.711\,A \] 6. **Summary of Individual Currents:** - **\( I_1 \) (Through \( R_1 \)):** \( \approx 0.71\,A \) - **\( I_2 \) (Through \( R_2 \)):** \( \approx 0.20\,A \) - **\( I_3 \) (Through \( R_3 \)):** \( \approx 0.51\,A \) - **\( I_4 \) (Through \( R_4 \)):** \( \approx 0.71\,A \) **Final Answer:** - Current through R₁: 0.71 A - Current through R₂: 0.20 A - Current through R₃: 0.51 A - Current through R₄: 0.71 A

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the individual currents through each resistor, we start by determining the equivalent resistance for the parallel combination of \( R_{2} \) and \( R_{3} \). The formula for equivalent resistance (\( R_{eq} \)) in parallel is given by: \[ \frac{1}{R_{eq}} = \frac{1}{R_{2}} + \frac{1}{R_{3}} = \frac{1}{50} + \frac{1}{20} \] Calculating this gives: \[ \frac{1}{R_{eq}} = \frac{2}{100} + \frac{5}{100} = \frac{7}{100} \] \[ R_{eq} = \frac{100}{7} \approx 14.29 \Omega \] Now, we need to find the total resistance of the circuit, which is the sum of \( R_{1} \) and \( R_{eq} \): \[ R_{total} = R_{1} + R_{eq} = 30 + 14.29 \approx 44.29 \Omega \] Next, we can find the total current (\( I_{total} \)) using Ohm's law, \( V = IR \): \[ I_{total} = \frac{E}{R_{total}} = \frac{60}{44.29} \approx 1.35 \, \text{A} \] Now, knowing the total current, we can find the currents through \( R_{2} \) and \( R_{3} \) since they are in parallel. The voltage across them is the same and can be calculated as follows: \[ V_{R2,R3} = I_{total} \cdot R_{1} = 1.35 \cdot 30 \approx 40.5 \, \text{V} \] Now, using Ohm's law again for each resistor: 1. **Current through \( R_{2} \)**: \[ I_{R2} = \frac{V_{R2,R3}}{R_{2}} = \frac{40.5}{50} \approx 0.81 \, \text{A} \] 2. **Current through \( R_{3} \)**: \[ I_{R3} = \frac{V_{R2,R3}}{R_{3}} = \frac{40.5}{20} \approx 2.025 \, \text{A} \] Finally, we can find the current through \( R_{1} \): \[ I_{R1} = I_{total} = 1.35 \, \text{A} \] Thus, the individual currents through the resistors are approximately: - \( I_{R1} \approx 1.35 \, \text{A} \) - \( I_{R2} \approx 0.81 \, \text{A} \) - \( I_{R3} \approx 2.025 \, \text{A} \) - The current through \( R_{4} \) is not provided in the initial conditions, we need more information to calculate it. Make sure to double-check the connections and ensure accuracy in your calculations!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad