Pregunta
upstudy study bank question image url

Find all real solutions to the equation: \( 2 x^{3}-25=-x^{2}+50 x \) \( x=\square \)

Ask by Dawson Evans. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The real solutions are \( x = 5 \), \( x = -5 \), and \( x = -\frac{1}{2} \).

Solución

To solve the equation: \[ 2x^{3} - 25 = -x^{2} + 50x \] First, move all terms to one side of the equation: \[ 2x^{3} + x^{2} - 50x - 25 = 0 \] We now have a cubic equation: \[ 2x^3 + x^2 - 50x - 25 = 0 \] **Step 1: Find Rational Roots** Using the Rational Root Theorem, possible rational roots are factors of the constant term divided by factors of the leading coefficient. The possible rational roots are: \[ \pm 1, \pm \frac{1}{2}, \pm 5, \pm \frac{5}{2}, \pm 25, \pm \frac{25}{2} \] Testing \( x = 5 \): \[ 2(5)^3 + (5)^2 - 50(5) - 25 = 250 + 25 - 250 - 25 = 0 \] So, \( x = 5 \) is a root. **Step 2: Factor the Polynomial** Factor out \( (x - 5) \) from the cubic equation: \[ 2x^3 + x^2 - 50x - 25 = (x - 5)(2x^2 + 11x + 5) \] **Step 3: Solve the Quadratic Equation** Now, solve the quadratic equation: \[ 2x^2 + 11x + 5 = 0 \] Using the quadratic formula: \[ x = \frac{-11 \pm \sqrt{121 - 40}}{4} = \frac{-11 \pm \sqrt{81}}{4} = \frac{-11 \pm 9}{4} \] This gives two solutions: \[ x = \frac{-11 + 9}{4} = -\frac{1}{2} \quad \text{and} \quad x = \frac{-11 - 9}{4} = -5 \] **Final Solutions** All real solutions to the equation are: \[ x = 5, \quad x = -5, \quad \text{and} \quad x = -\frac{1}{2} \] **Answer:** \(x = 5,\; x = -5,\; \text{and}\; x = -\dfrac{1}{2}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

First, let's rearrange the equation into a standard form. We have: \[ 2x^3 + x^2 - 50x - 25 = 0. \] Now, to find the real solutions, we can apply the Rational Root Theorem. This suggests checking factors of \(-25\) (the constant term) over factors of \(2\) (the leading coefficient). Possible rational roots include \( \pm 1, \pm 5, \pm 25\) and so forth. Testing \(x = 5\): \[ 2(5)^3 + (5)^2 - 50(5) - 25 = 2(125) + 25 - 250 - 25 = 250 + 25 - 250 - 25 = 0. \] So, \(x = 5\) is a root. We can use synthetic division to factor the polynomial by \(x - 5\): ``` 5 | 2 0 1 -50 -25 | 10 50 255 ------------------------ 2 10 51 205 ``` This gives us the quotient \(2x^2 + 10x + 51\). The full factorization is: \[ 2x^3 + x^2 - 50x - 25 = (x - 5)(2x^2 + 10x + 51). \] Next, we need to find the roots of \(2x^2 + 10x + 51 = 0\) using the quadratic formula \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): \[ x = \frac{-10 \pm \sqrt{10^2 - 4 \cdot 2 \cdot 51}}{2 \cdot 2} = \frac{-10 \pm \sqrt{100 - 408}}{4} = \frac{-10 \pm \sqrt{-308}}{4}. \] Since the discriminant is negative (\(-308\)), this quadratic has no real solutions. Thus, the only real solution to the original equation is: \[ x = 5. \] Therefore, the final answer is: \( x = 5 \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad