9-1 Lesson Check: Similar Polygons (LMS graded) \[ \begin{array}{l}\text { Part } 1 \text { of } 2 \\ \begin{array}{l}\text { List the pairs of congruent angles and the extended } \\ \text { proportion that relates the corresponding sides for the } \\ \text { similar triangles. }\end{array} \\ \Delta A B C \sim \Delta H I J\end{array} \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
In triangles \( \Delta ABC \) and \( \Delta HIJ \), the pairs of congruent angles are \( \angle A \cong \angle H \), \( \angle B \cong \angle I \), and \( \angle C \cong \angle J \). This means that each angle in triangle ABC has a corresponding equal angle in triangle HIJ, showing their similarity. For the extended proportion relating the corresponding sides, you can express it as follows: \( \frac{AB}{HI} = \frac{BC}{IJ} = \frac{AC}{HJ} \). This proportion tells us that the ratios of the lengths of the sides of triangle ABC to the corresponding sides of triangle HIJ are equal, adhering to the properties of similar polygons!