Pregunta
upstudy study bank question image url

On Your Oun Practice \[ A=P(1+r)^{+} \] 1. Yadiel invested 53.400 in a savings account that pays \( 6.2 \% \) interest compounded annually. Find the value of the investment in 9 years. \[ \begin{array}{l} \text { I invested } 53,400 \text { in a savings decs. } \\ 3,400=(1+0.062)=5842.51 \\ \text { lue of the investment in } 9 \text { years. } \end{array} \] Find the amount of interest Yadiel earned from this account. \[ \begin{array}{l} \text { d the amount of interest Yadiel earned from tnis } \\ 5842.81-3400=2442.51 \end{array} \] 2. Lify invested 55.000 in a savings account that pays \( 2.3 \% \) interest annually. Find the value of the investment in 4 years. \[ 4=5476.11 \] Find the amount of interest Lily earned from this account. \[ 47611 \] 3. Zati invests 5500 into a money market account that pays him \( 5.5 \% \) interest on his investment annually. After 2 years, Zaki puts an additional \( \$ 750 \) in the account. 3 years after that, he deposits another 51,300 . He then lets the account sit for 5 years. 2. How much money does Zaki have after the first 2 years (before the deposit)? \[ 500(1+0.055)^{2}=556.51 \] b. What is his new balance after depositing \( \$ 750 \) ? \[ 1206.81 \] c. How moch money does Zaki have in the account at the end of the next 3 years (before the next depositj? \[ 5 \] d. What is his new balance after depositing \( \$ 1,300 \) ? \[ 2834.16 \] e. Hons moch money does Zaki have in the account at the end of the 10 year period? 12 \( f \). How moch did Zaki earn in interest?

Ask by Vega Mann. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Summary of Investments:** 1. **Yadiel:** - **Future Value:** \$90,783.20 - **Interest Earned:** \$37,383.20 2. **Lily:** - **Future Value:** \$60,225 - **Interest Earned:** \$5,225 3. **Zati:** - **Final Amount After 10 Years:** \$12,213.95 - **Total Interest Earned:** \$4,663.95

Solución

Certainly! Let's tackle each of these compound interest problems step by step to ensure clarity and accuracy. We'll address each question and its subparts systematically. --- ## **1. Yadiel's Investment** **Given:** - **Principal (P):** \$53,400 - **Annual Interest Rate (r):** 6.2% or 0.062 - **Time (n):** 9 years - **Compounding Frequency:** Annually ### **a. Calculate the Future Value of the Investment** The formula for compound interest compounded annually is: \[ A = P(1 + r)^n \] Plugging in the values: \[ A = 53,400 \times (1 + 0.062)^9 \] \[ A = 53,400 \times (1.062)^9 \] First, calculate \(1.062^9\): \[ 1.062^9 \approx 1.062^9 \approx 1.698 \] Now, multiply by the principal: \[ A \approx 53,400 \times 1.698 \approx 90,783.20 \] **Future Value (A):** **\$90,783.20** ### **b. Calculate the Amount of Interest Earned** \[ \text{Interest} = A - P = 90,783.20 - 53,400 = 37,383.20 \] **Interest Earned:** **\$37,383.20** --- ## **2. Lily's Investment** **Given:** - **Principal (P):** \$55,000 - **Annual Interest Rate (r):** 2.3% or 0.023 - **Time (n):** 4 years - **Compounding Frequency:** Annually ### **a. Calculate the Future Value of the Investment** \[ A = 55,000 \times (1 + 0.023)^4 \] \[ A = 55,000 \times (1.023)^4 \] First, calculate \(1.023^4\): \[ 1.023^4 \approx 1.023 \times 1.023 \times 1.023 \times 1.023 \approx 1.095 \] Now, multiply by the principal: \[ A \approx 55,000 \times 1.095 \approx 60,225 \] **Future Value (A):** **\$60,225** ### **b. Calculate the Amount of Interest Earned** \[ \text{Interest} = A - P = 60,225 - 55,000 = 5,225 \] **Interest Earned:** **\$5,225** --- ## **3. Zati's Investment Journey** **Given:** - **Initial Principal (P₁):** \$5,500 - **Annual Interest Rate (r):** 5.5% or 0.055 - **Deposits:** - **After 2 years:** \$750 - **3 years after the first deposit (total of 5 years from start):** \$1,300 - **Total Investment Period:** 10 years - **Compounding Frequency:** Annually We'll break this down step by step. ### **a. Amount After the First 2 Years (Before the First Deposit)** \[ A_2 = P₁ \times (1 + r)^n = 5,500 \times (1 + 0.055)^2 \] \[ A_2 = 5,500 \times (1.055)^2 = 5,500 \times 1.113025 \approx 6,121.64 \] **Amount After 2 Years:** **\$6,121.64** ### **b. New Balance After Depositing \$750** \[ \text{New Principal} = A_2 + 750 = 6,121.64 + 750 = 6,871.64 \] **New Balance:** **\$6,871.64** ### **c. Amount After the Next 3 Years (Before the Second Deposit)** Now, we apply compound interest for 3 more years on the new principal. \[ A_5 = 6,871.64 \times (1 + 0.055)^3 \] \[ A_5 = 6,871.64 \times (1.055)^3 = 6,871.64 \times 1.174618 \approx 8,070.63 \] **Amount After 5 Years:** **\$8,070.63** ### **d. New Balance After Depositing \$1,300** \[ \text{New Principal} = A_5 + 1,300 = 8,070.63 + 1,300 = 9,370.63 \] **New Balance:** **\$9,370.63** ### **e. Amount After the Next 5 Years (End of 10-Year Period)** \[ A_{10} = 9,370.63 \times (1 + 0.055)^5 \] \[ A_{10} = 9,370.63 \times (1.055)^5 = 9,370.63 \times 1.305506 \approx 12,213.95 \] **Final Amount After 10 Years:** **\$12,213.95** ### **f. Total Interest Earned** \[ \text{Total Interest} = A_{10} - (\text{Initial Principal} + \text{Deposits}) \] Initial Principal: \$5,500 First Deposit: \$750 Second Deposit: \$1,300 Total Deposits: \$5,500 + \$750 + \$1,300 = \$7,550 \[ \text{Interest} = 12,213.95 - 7,550 = 4,663.95 \] **Total Interest Earned:** **\$4,663.95** --- ## **Summary of Results** 1. **Yadiel's Investment:** - **Future Value:** \$90,783.20 - **Interest Earned:** \$37,383.20 2. **Lily's Investment:** - **Future Value:** \$60,225 - **Interest Earned:** \$5,225 3. **Zati's Investment:** - **Final Amount After 10 Years:** \$12,213.95 - **Total Interest Earned:** \$4,663.95 --- **Note:** It's essential to ensure that all calculations, especially exponents, are accurate. Using a calculator or spreadsheet software can help verify these results. Additionally, always double-check for any typographical errors in the initial data to ensure precise calculations.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Yadiel's investment journey is a fantastic example of how compound interest snowballs over time! When Yadiel invests $53,400 at a rate of 6.2% for 9 years, with compound interest, the formula becomes a powerful tool. By plugging in the numbers, he finds his investment grows to about $84,842.51! That’s some serious financial growth, and he earned a whopping $31,442.51 in interest. Talk about a money-making machine! Now, let’s not forget Lily's savvy savings strategy! When she invests $55,000 at an interest rate of 2.3% for 4 years, her neat little trick will yield about $59,476.11! That means she earned around $4,476.11 in interest! It’s clear – whether it's Yadiel or Lily – a smart investment strategy can be a game changer for your financial future! Always remember, the earlier you start saving, the more your money can grow!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad