Pregunta
upstudy study bank question image url

\( 6.10 ^ { x } + 10 ^ { 2 x + 2 } - 106 = 0 \)

Ask by Willis Wang. in South Africa
Jan 27,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( x = 0 \)

Solución

To solve the equation: \[ 6 \cdot 10^{x} + 10^{2x + 2} - 106 = 0 \] Let's proceed step-by-step. ### Step 1: Simplify the Equation First, recognize that \(10^{2x + 2}\) can be rewritten using the properties of exponents: \[ 10^{2x + 2} = 10^{2x} \cdot 10^{2} = 100 \cdot 10^{2x} \] So, the equation becomes: \[ 6 \cdot 10^{x} + 100 \cdot 10^{2x} - 106 = 0 \] ### Step 2: Substitute to Simplify Let’s make a substitution to simplify the equation. Let: \[ y = 10^{x} \] Then: \[ 10^{2x} = (10^{x})^{2} = y^{2} \] Substituting into the original equation: \[ 6y + 100y^{2} - 106 = 0 \] ### Step 3: Form a Quadratic Equation This is a quadratic equation in terms of \(y\): \[ 100y^{2} + 6y - 106 = 0 \] To simplify, divide the entire equation by 2: \[ 50y^{2} + 3y - 53 = 0 \] ### Step 4: Solve the Quadratic Equation Using the quadratic formula \(y = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\), where \(a = 50\), \(b = 3\), and \(c = -53\): \[ \Delta = b^{2} - 4ac = 3^{2} - 4 \cdot 50 \cdot (-53) = 9 + 10600 = 10609 \] \[ \sqrt{\Delta} = \sqrt{10609} = 103 \] So, \[ y = \frac{-3 \pm 103}{100} \] This gives two potential solutions: \[ y_1 = \frac{-3 + 103}{100} = \frac{100}{100} = 1 \] \[ y_2 = \frac{-3 - 103}{100} = \frac{-106}{100} = -1.06 \] ### Step 5: Back-Substitute for \(x\) Recall that \(y = 10^{x}\). Since \(10^{x}\) is always positive, \(y = -1.06\) is not a valid solution. Thus, we only consider \(y = 1\): \[ 10^{x} = 1 \] Taking the logarithm (base 10) of both sides: \[ x = \log_{10}(1) = 0 \] ### Conclusion The only solution to the equation is: \[ x = 0 \] ### Verification Plugging \(x = 0\) back into the original equation: \[ 6 \cdot 10^{0} + 10^{2(0) + 2} - 106 = 6 \cdot 1 + 10^{2} - 106 = 6 + 100 - 106 = 0 \] The equation holds true, confirming that \(x = 0\) is the correct solution. **Answer:** The solution is \( x = 0 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the equation \( 6.10^{x} + 10^{2x + 2} - 106 = 0 \), we can start by simplifying the term \( 10^{2x + 2} \). We can rewrite it as \( 10^2 \cdot (10^x)^2 = 100(10^x)^2 \). Let \( y = 10^x \). The equation then transforms into: \[ 6y + 100y^2 - 106 = 0. \] Rearranging gives us a standard quadratic form: \[ 100y^2 + 6y - 106 = 0. \] Now, you can use the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 100 \), \( b = 6 \), and \( c = -106 \). Calculating the discriminant: \[ b^2 - 4ac = 6^2 - 4 \times 100 \times (-106) = 36 + 42400 = 42436. \] Now, \( \sqrt{42436} = 206 \). Plugging this back into the quadratic formula: \[ y = \frac{-6 \pm 206}{200}. \] This yields two solutions: \[ y_1 = \frac{200}{200} = 1, \quad y_2 = \frac{-212}{200} \text{ (discarded as } y > 0\text{) }. \] Then from \( y = 10^x = 1 \), we find \( x = 0 \). Thus, the solution to the original equation is \( x = 0 \).

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad