\( 6.10 ^ { x } + 10 ^ { 2 x + 2 } - 106 = 0 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the equation \( 6.10^{x} + 10^{2x + 2} - 106 = 0 \), we can start by simplifying the term \( 10^{2x + 2} \). We can rewrite it as \( 10^2 \cdot (10^x)^2 = 100(10^x)^2 \). Let \( y = 10^x \). The equation then transforms into: \[ 6y + 100y^2 - 106 = 0. \] Rearranging gives us a standard quadratic form: \[ 100y^2 + 6y - 106 = 0. \] Now, you can use the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 100 \), \( b = 6 \), and \( c = -106 \). Calculating the discriminant: \[ b^2 - 4ac = 6^2 - 4 \times 100 \times (-106) = 36 + 42400 = 42436. \] Now, \( \sqrt{42436} = 206 \). Plugging this back into the quadratic formula: \[ y = \frac{-6 \pm 206}{200}. \] This yields two solutions: \[ y_1 = \frac{200}{200} = 1, \quad y_2 = \frac{-212}{200} \text{ (discarded as } y > 0\text{) }. \] Then from \( y = 10^x = 1 \), we find \( x = 0 \). Thus, the solution to the original equation is \( x = 0 \).