Factor out the GCF from the polynomial. \[ 27 x^{7}+81 x^{6}-45 x^{2}+18 \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To factor out the greatest common factor (GCF) from the polynomial \( 27 x^{7}+81 x^{6}-45 x^{2}+18 \), we first need to find the GCF of the coefficients \( 27, 81, -45, \) and \( 18 \). The GCF of these numbers is \( 9 \). Next, we notice that each term can be divided by \( 9 \). We also observe that the lowest degree of \( x \) in the polynomial is \( x^{2} \), so we can factor out \( 9x^{2} \) as well. Now, we can factor the polynomial: \[ 27 x^{7}+81 x^{6}-45 x^{2}+18 = 9x^{2}(3x^{5} + 9x^{4} - 5 + 2/x^{2}) \] So the final factored form is: \[ 9x^{2}(3x^{5} + 9x^{4} - 5 + \frac{2}{x^{2}}) \]