Pregunta
upstudy study bank question image url

Question 14 ( 5 points) \( \checkmark \) Saved \( \begin{array}{l}\text { The plans for a rectangular deck call for the width to be } 10 \text { feet less than the } \\ \text { Sam wants the deck to have an overall perimeter of } 60 \text { feet. What should the } \\ \text { of the deck be? }\end{array} \)

Ask by Goodwin Fernandez. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The length of the deck should be 20 feet.

Solución

To solve this problem, we can use the formula for the perimeter of a rectangle, which is given by \( P = 2l + 2w \), where \( P \) is the perimeter, \( l \) is the length, and \( w \) is the width. Given that the width is 10 feet less than the length, we can express the width in terms of the length as \( w = l - 10 \). The perimeter of the deck is given as 60 feet. Substituting the expressions for the width and the perimeter into the formula for the perimeter, we get: \[ 60 = 2l + 2(l - 10) \] Simplifying this equation will allow us to find the length of the deck. Solve the equation by following steps: - step0: Solve for \(l\): \(60=2l+2\left(l-10\right)\) - step1: Swap the sides: \(2l+2\left(l-10\right)=60\) - step2: Move the expression to the left side: \(2l+2\left(l-10\right)-60=0\) - step3: Calculate: \(4l-80=0\) - step4: Move the constant to the right side: \(4l=0+80\) - step5: Remove 0: \(4l=80\) - step6: Divide both sides: \(\frac{4l}{4}=\frac{80}{4}\) - step7: Divide the numbers: \(l=20\) The length of the deck should be 20 feet.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the dimensions of the deck, we can set up some equations. Let's denote the width of the deck as \( w \) feet. According to the problem, the length \( l \) of the deck is \( w + 10 \) feet since it needs to be 10 feet more than the width. The formula for the perimeter \( P \) of a rectangle is given by: \[ P = 2l + 2w \] Substituting in the perimeter value of 60 feet, we have: \[ 60 = 2(w + 10) + 2w \] Simplifying this equation: \[ 60 = 2w + 20 + 2w \] \[ 60 = 4w + 20 \] \[ 40 = 4w \] \[ w = 10 \] Now we can find the length: \[ l = w + 10 = 10 + 10 = 20 \] Thus, the dimensions of the deck should be 10 feet wide and 20 feet long! If you’re ever in a brainstorming session about deck designs, remember that proportionality is key! Building a great outdoor space is all about finding the right spacing to make it functional and aesthetically pleasing. Always sketch out your ideas before diving into the build to avoid any costly mistakes! When planning your deck or any project, be cautious about the edges and spaces. Many people forget about the space needed for things like railings or furniture, which can shrink your usable area significantly. Always account for these extra elements when calculating final dimensions!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad