Pregunta
upstudy study bank question image url

The rule for winning the game is changed. The game is now won if the product of the numbers, recorded in the table, from one throw of the two dice is \( n \), where \( n \in \mathbb{N} \). The probability of winning the game is now \( \frac{1}{36} \). List the possible values of \( n \).

Ask by Cox Mccarthy. in Ireland
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The possible values of \( n \) are 1, 9, 16, 25, and 36.

Solución

To determine the possible values of \( n \) that result in a winning probability of \( \frac{1}{36} \), we consider the following: 1. **Assumption**: We're using two standard six-sided dice, each showing numbers from 1 to 6. 2. **Total Outcomes**: There are \( 6 \times 6 = 36 \) possible outcomes when rolling two dice. 3. **Winning Condition**: The game is won if the product of the numbers on the two dice equals \( n \). For the probability to be \( \frac{1}{36} \), there must be exactly **one** pair \((a, b)\) such that \( a \times b = n \). 4. **Possible Products and Their Frequencies**: - **Unique Products**: These are products that can only be achieved in one way. - \( 1 = 1 \times 1 \) - \( 9 = 3 \times 3 \) - \( 16 = 4 \times 4 \) - \( 25 = 5 \times 5 \) - \( 36 = 6 \times 6 \) - **Non-Unique Products**: These can be achieved in multiple ways (e.g., \( 2 = 1 \times 2 \) and \( 2 \times 1 \)), hence their probabilities would be greater than \( \frac{1}{36} \). 5. **Conclusion**: The values of \( n \) that satisfy the winning condition with a probability of \( \frac{1}{36} \) are those with exactly one corresponding outcome. **Possible values of \( n \)**: \[ 1, \ 9, \ 16, \ 25, \ 36 \] **Answer:** All positive integers equal to 1, 9, 16, 25, or 36

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

In the game with two six-sided dice, the possible products from a single throw range from \( 1 \) (when both dice show \( 1 \)) to \( 36 \) (when both dice show \( 6 \)). The unique products that can be obtained from throwing the two dice are: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, and 36. Thus, the possible values of \( n \), the product of the numbers on the two dice, that yield a probability of \( \frac{1}{36} \) are these distinct products.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad