6. (a) \( 2 x^{2}+2 x+3 x^{2}+5 x \) (b) \( 3 m^{2}+2 m+4 m^{2}-3 m \) (c) \( -8 q^{2}-3+4 q^{2}-q \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To simplify the expressions, we combine like terms by adding the coefficients of terms that share the same variable and exponent. For the first expression, \( 2x^2 + 2x + 3x^2 + 5x \), we combine the \( x^2 \) terms: \( 2x^2 + 3x^2 = 5x^2 \). Then, we combine the \( x \) terms: \( 2x + 5x = 7x \). Thus, the simplified expression is \( 5x^2 + 7x \). For the second expression, \( 3m^2 + 2m + 4m^2 - 3m \), we first combine the \( m^2 \) terms: \( 3m^2 + 4m^2 = 7m^2 \). Next, we combine the \( m \) terms: \( 2m - 3m = -m \). So, the simplified expression becomes \( 7m^2 - m \). In the last expression, \( -8q^2 - 3 + 4q^2 - q \), we start with the \( q^2 \) terms: \( -8q^2 + 4q^2 = -4q^2 \). The linear term \( -q \) remains unchanged, and the constant term \( -3 \) also stays as it is. Therefore, the simplified form is \( -4q^2 - q - 3 \). In summary: (a) \( 5x^2 + 7x \) (b) \( 7m^2 - m \) (c) \( -4q^2 - q - 3 \)