Pregunta
upstudy study bank question image url

Circle \( J \) is located in the first quadrant with center \( (a, b) \) and radius \( s \). Felipe transforms Circle \( J \) to prove that it is similar to any circle centered at the origin with radius \( t \). Which sequence of transformations did Felipe use? (A) Translate Circle \( J \) by \( (x+a, y+b) \) and dilate by a factor of \( \frac{t}{S} \). Translate Circle \( J \) by \( (x+a, y+b) \) and dilate by a factor of \( \frac{S}{t} \). (C) Translate Circle \( J \) by \( (x-a, y-b) \) and dilate by a factor of \( \frac{t}{s} \). (D) Translate Circle \( J \) by \( (x-a, y-b) \) and dilate by a factor of \( \frac{S}{t} \).

Ask by Dickson Frank. in the United States
Dec 06,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**(C) Translate Circle \( J \) by \( (x-a, y-b) \) and dilate by a factor of \( \frac{t}{s} \).**

Solución

To determine the correct sequence of transformations that Felipe used to show that Circle \( J \) is similar to any circle centered at the origin with radius \( t \), we need to analyze the transformations involved. 1. **Translation**: Circle \( J \) is centered at \( (a, b) \). To move this circle to be centered at the origin \( (0, 0) \), we need to translate it by \( (-a, -b) \). This means we will adjust the coordinates of the circle's center from \( (a, b) \) to \( (0, 0) \). 2. **Dilation**: After translating the circle to the origin, we need to adjust its radius from \( s \) to \( t \). This is done through dilation. The factor for dilation will be \( \frac{t}{s} \) because we want to scale the radius \( s \) to become \( t \). Now, let's match this reasoning with the options provided: - **Option (A)**: Translate Circle \( J \) by \( (x+a, y+b) \) and dilate by a factor of \( \frac{t}{s} \). (Incorrect translation) - **Option (B)**: Translate Circle \( J \) by \( (x+a, y+b) \) and dilate by a factor of \( \frac{s}{t} \). (Incorrect translation and dilation) - **Option (C)**: Translate Circle \( J \) by \( (x-a, y-b) \) and dilate by a factor of \( \frac{t}{s} \). (Correct translation and dilation) - **Option (D)**: Translate Circle \( J \) by \( (x-a, y-b) \) and dilate by a factor of \( \frac{s}{t} \). (Correct translation but incorrect dilation) The correct sequence of transformations that Felipe used is: **(C) Translate Circle \( J \) by \( (x-a, y-b) \) and dilate by a factor of \( \frac{t}{s} \).**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To transform Circle \( J \) centered at \( (a, b) \) with radius \( s \) into a circle centered at the origin with radius \( t \), Felipe first needs to translate the circle. The translation should shift the center from \( (a, b) \) to \( (0, 0) \), which is achieved by moving \( (x, y) \) to \( (x-a, y-b) \). After that, he dilates the circle to adjust its radius from \( s \) to \( t \). The appropriate factor for this dilation is \( \frac{t}{s} \). Therefore, the correct sequence of transformations is: (C) Translate Circle \( J \) by \( (x-a, y-b) \) and dilate by a factor of \( \frac{t}{s} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad