Number Sense Mary has three lengths of cable, \( \frac{3}{6} \) yard long, \( \frac{1}{4} \) yard long, and \( \frac{1}{3} \) yard long. Which two pieces together make a length of \( \frac{20}{24} \) yard?
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the two lengths that add up to \( \frac{20}{24} \) yards, we first convert all fractions to have a common denominator. The common denominator for 6, 4, and 3 is 12. - \( \frac{3}{6} = \frac{6}{12} \) - \( \frac{1}{4} = \frac{3}{12} \) - \( \frac{1}{3} = \frac{4}{12} \) Now, we want to see which two lengths add up to \( \frac{20}{24} = \frac{10}{12} \). By combining: - \( \frac{6}{12} + \frac{3}{12} = \frac{9}{12} \) (not the target) - \( \frac{6}{12} + \frac{4}{12} = \frac{10}{12} \) (this is a match!) - \( \frac{3}{12} + \frac{4}{12} = \frac{7}{12} \) (not the target) Therefore, the two pieces that together make \( \frac{20}{24} \) yard are \( \frac{3}{6} \) yard long and \( \frac{1}{3} \) yard long.