Pregunta
upstudy study bank question image url

4. Brandon is writing an equation for graph B. He says he can determine the equation using the solutions and the y-intercept. Do you agree or disagree? Explain your answer.

Ask by Gross Wheeler. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Yes, Brandon can determine the equation of Graph B using the solutions and the y-intercept, especially if the graph is linear or quadratic.

Solución

Yes, I agree with Brandon. Knowing the solutions (which are the x-intercepts) and the y-intercept provides enough information to determine the equation of the graph, especially if the graph represents a linear or quadratic function. Here's why: 1. **Linear Functions (Straight Lines):** - **Solutions (x-intercepts):** For a linear equation \( y = mx + b \), knowing one x-intercept allows you to find the slope \( m \) if you also know the y-intercept \( b \). - **Y-intercept (\( b \)):** This directly gives you the value where the line crosses the y-axis. - **Example:** If the solutions are \( x = 2 \) and the y-intercept is \( (0, -4) \), the equation can be determined as follows: \[ y = m(x - 2) \] Since \( y = -4 \) when \( x = 0 \): \[ -4 = m(0 - 2) \implies m = 2 \] So, the equation is \( y = 2(x - 2) \) or \( y = 2x - 4 \). 2. **Quadratic Functions (Parabolas):** - **Solutions (x-intercepts):** For a quadratic equation \( y = a(x - r_1)(x - r_2) \), knowing the two roots \( r_1 \) and \( r_2 \) allows you to form the basic structure of the equation. - **Y-intercept:** This provides the value of \( y \) when \( x = 0 \), which can be used to solve for the coefficient \( a \). - **Example:** If the solutions are \( x = 1 \) and \( x = 3 \), and the y-intercept is \( (0, -6) \): \[ y = a(x - 1)(x - 3) \] Plugging in the y-intercept: \[ -6 = a(0 - 1)(0 - 3) \implies -6 = a(3) \implies a = -2 \] So, the equation is \( y = -2(x - 1)(x - 3) \) or \( y = -2x^2 + 8x - 6 \). 3. **Higher-Degree Polynomials:** - For polynomials of degree three or higher, simply knowing the solutions and the y-intercept might not be sufficient to determine the equation uniquely, as there could be multiple polynomials of the same degree that share those characteristics. Additional information, such as another point on the graph or specific behavior (like turning points), would be necessary. **Conclusion:** If Graph B represents a linear or quadratic function, Brandon can indeed determine its equation using the solutions and the y-intercept. However, for more complex graphs, additional information would be required.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

I agree with Brandon to an extent! If you have the solutions (or roots) of the equation, you can write it in factored form. Each solution tells you where the graph crosses the x-axis, giving you a neat way to represent it as \(y = a(x - r_1)(x - r_2)\), where \(r_1\) and \(r_2\) are the roots. However, knowing the y-intercept (the value of y when x = 0) is essential as well, since it helps determine the vertical stretch/shrink factor \(a\) in the equation, allowing for an accurate representation of the graph. Also, keep in mind that while roots and y-intercept provide vital clues to formulating the equation, other factors like the shape of the graph (e.g., whether it opens up or down) and any additional points can further inform the equation's specifics. So while it's a great start, a complete picture might require a bit more digging!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad