Pregunta
upstudy study bank question image url

Solve: \( x^{2}+2 x+17=0 \) A \( x=-1+4 i \) or \( x=-1-4 i \) B \( x=-1+8 i \) or \( x=-1-8 i \) C \( x=1+8 i \) or \( x=1-8 i \) (D \( x=1+4 i \) or \( x=1-4 i \)

Ask by Gough Barnett. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are \( x = -1 + 4i \) or \( x = -1 - 4i \), so the correct answer is A.

Solución

To solve the quadratic equation \( x^{2} + 2x + 17 = 0 \), we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, the coefficients are: - \( a = 1 \) - \( b = 2 \) - \( c = 17 \) **Step 1: Calculate the Discriminant (\( \Delta \))** \[ \Delta = b^2 - 4ac = (2)^2 - 4(1)(17) = 4 - 68 = -64 \] Since the discriminant is negative (\( \Delta = -64 \)), the equation has two complex (imaginary) roots. **Step 2: Apply the Quadratic Formula** \[ x = \frac{-2 \pm \sqrt{-64}}{2(1)} = \frac{-2 \pm 8i}{2} = -1 \pm 4i \] **Solutions:** \[ x = -1 + 4i \quad \text{or} \quad x = -1 - 4i \] **Therefore, the correct answer is:** **A.** \( x = -1 + 4i \) or \( x = -1 - 4i \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the equation \( x^{2}+2x+17=0 \), we can use the quadratic formula, \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1 \), \( b = 2 \), and \( c = 17 \). First, we calculate the discriminant: \[ b^2 - 4ac = 2^2 - 4 \cdot 1 \cdot 17 = 4 - 68 = -64 \] Since the discriminant is negative, the solutions will be complex. Now, substituting into the quadratic formula: \[ x = \frac{-2 \pm \sqrt{-64}}{2 \cdot 1} = \frac{-2 \pm 8i}{2} = -1 \pm 4i \] So the correct solutions are \( x = -1 + 4i \) or \( x = -1 - 4i \), which corresponds to option **A**. Now, let's add a bit of engaging context to this mathematical journey! Did you know that quadratic equations like this one have been studied for over 2,000 years? The ancient Babylonians were among the first to tackle these types of equations, and they may not have used the same symbolic notation that we do today, but they certainly had a grasp of the relationships between the coefficients and roots. It's fascinating to think about how far math has come since then! For a real-world twist, consider how complex numbers are not just theoretical; they play a big role in electrical engineering and physics! Engineers use these numbers to analyze circuits, model waves, and solve problems involving oscillations. So, while our solution looks abstract, it has useful applications in the real world, helping us understand and design technology we use daily!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad