Pregunta
upstudy study bank question image url

Determine the convergence or divergence of the sequence with the given \( n \)th term. If the sequence converges, find its limit. (If the quantity diverges, enter DIVERGES.) \[ a_{n}=(-1)^{n}\left(\frac{n}{n+2}\right) \]

Ask by Frank Nguyen. in the United States
Dec 18,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The sequence diverges.

Solución

The given sequence is: \[ a_{n} = (-1)^{n} \left( \frac{n}{n+2} \right) \] To determine the convergence or divergence of this sequence, let's analyze its behavior as \( n \) approaches infinity. 1. **Analyze the Fraction:** \[ \frac{n}{n+2} = \frac{n}{n \left(1 + \frac{2}{n}\right)} = \frac{1}{1 + \frac{2}{n}} \xrightarrow{n \to \infty} 1 \] As \( n \) becomes very large, \( \frac{n}{n+2} \) approaches 1. 2. **Consider the Alternating Factor:** \[ a_{n} = (-1)^{n} \times \text{(something approaching 1)} \] Since \( (-1)^{n} \) alternates between -1 and 1 as \( n \) increases, and the fraction \( \frac{n}{n+2} \) approaches 1, the sequence \( a_{n} \) will oscillate between values close to -1 and 1. 3. **Conclusion on Convergence:** For a sequence to converge, its terms must approach a single finite limit. However, in this case, the sequence does not settle down to a single value but continues to oscillate between values near -1 and 1 indefinitely. **Therefore, the sequence diverges.** **Answer:** DIVERGES.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the convergence or divergence of the sequence \( a_n = (-1)^{n} \left( \frac{n}{n+2} \right) \), we first analyze the absolute value of the term without the alternating factor: \[ \left| a_n \right| = \frac{n}{n+2} \] As \( n \) approaches infinity, we examine the limit of this absolute value: \[ \lim_{n \to \infty} \frac{n}{n+2} = \lim_{n \to \infty} \frac{1}{1 + \frac{2}{n}} = 1 \] Since this limit is equal to 1 and not approaching 0, we know that \( \left| a_n \right| \) does not converge to 0. Now, let's consider the behavior of the sequence \( a_n \): - When \( n \) is even, \( a_n \) takes the positive value \( \frac{n}{n+2} \). - When \( n \) is odd, \( a_n \) takes the negative value \( -\frac{n}{n+2} \). Thus, as \( n \) increases, the sequence oscillates between values that approach 1 and -1: \[ \lim_{n \to \infty} a_{2n} = 1 \quad \text{and} \quad \lim_{n \to \infty} a_{2n+1} = -1 \] Since the sequence does not settle on any one value and oscillates indefinitely, the overall conclusion is that the sequence diverges. Thus, the final answer is: DIVERGES

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad