\( \left. \begin{array} { l } { 4 - 2 ( 7 + 8 x ) = 12 - 6 ( 2 x - 7 ) + 4 x } \\ { 4 \times \quad A \quad - 4 } \\ { 4 \times 8 } \\ { 4 \times 8 } \end{array} \right. \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Let’s dive into the equation! First, we can simplify both sides step by step. Starting from the left side: 1. Distribute the -2 into the parentheses: \( 4 - 2(7 + 8x) = 4 - 14 - 16x = -10 - 16x \) Now look to the right side: 2. Distributing -6 into the parentheses: \( 12 - 6(2x - 7) + 4x = 12 - 12x + 42 + 4x = 54 - 8x \) Next, we’ll equate the simplified expressions: \(-10 - 16x = 54 - 8x\) Now, let's isolate the variable: 1. Add \(16x\) to both sides: \(-10 = 54 + 8x + 16x\) \(-10 = 54 + 24x\) 2. Subtract 54 from both sides: \(-10 - 54 = 24x\) \(-64 = 24x\) 3. Finally, divide by 24: \(x = \frac{-64}{24} = -\frac{8}{3}\) Now you have your solution \(x = -\frac{8}{3}\). That was a fun little excursion through equations! Now, what’s next? You want to plug that into \(4 \times A - 4\) or something else? Let's keep the calculations rolling!