Pregunta
upstudy study bank question image url

32. Let \( H(t) \) be the daily cost (in dollars) to heat an office building when the outside temperature is \( t \) degre Fahrenheit. a. What is the meaning of \( H^{\prime}(58) \) ? What are the units? b. Would you expect \( H^{\prime}(58) \) to be positive or negative? Explain

Ask by Lowe Romero. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**a.** \( H^{\prime}(58) \) represents the rate at which the daily heating cost changes with temperature at 58°F, measured in dollars per degree Fahrenheit ($⁄°F). **b.** \( H^{\prime}(58) \) is expected to be negative because higher outside temperatures generally lead to lower heating costs.

Solución

Let's address each part of the problem step by step. ### **a. Meaning and Units of \( H^{\prime}(58) \)** **Meaning:** \( H^{\prime}(58) \) represents the **instantaneous rate of change** of the daily heating cost with respect to the outside temperature when the temperature is **58°F**. In simpler terms, it tells us how sensitive the heating cost is to small changes in the outside temperature around 58°F. **Units:** Since \( H(t) \) measures cost in **dollars** and \( t \) is measured in **degrees Fahrenheit (°F)**, the units of the derivative \( H^{\prime}(58) \) are: \[ \frac{\text{dollars}}{\text{degree Fahrenheit}} \, (\$/°F) \] ### **b. Sign of \( H^{\prime}(58) \)** We **expect \( H^{\prime}(58) \) to be negative**. Here's why: - **Relationship Between Temperature and Heating Cost:** - As the **outside temperature increases**, the need for heating typically **decreases**, leading to a **lower heating cost**. - Conversely, if the temperature were to **decrease**, the heating cost would generally **increase**. - **Implication for the Derivative:** - A **negative derivative** indicates that as temperature \( t \) **increases**, the heating cost \( H(t) \) **decreases**. - Therefore, at \( t = 58°F \), \( H^{\prime}(58) \) being negative aligns with the expectation that warmer outside temperatures reduce heating costs. ### **Summary** - **a.** \( H^{\prime}(58) \) is the rate at which the daily heating cost changes with respect to temperature at 58 °F, measured in dollars per degree Fahrenheit ($⁄°F). - **b.** It is expected to be negative because higher outside temperatures typically lead to lower heating costs.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

\( H^{\prime}(58) \) represents the rate of change of the daily heating cost with respect to temperature when the outside temperature is 58 degrees Fahrenheit. In practical terms, it indicates how much the heating cost will increase or decrease for a small change in temperature around 58°F. The units for \( H^{\prime}(58) \) would be dollars per degree Fahrenheit (\$ / °F). You'd likely expect \( H^{\prime}(58) \) to be negative. This is because, generally, as the outside temperature rises (moves above 58°F), the cost to heat the building would decrease since the building would need less heating. Conversely, if the temperature drops below 58°F, the cost would likely increase, reflecting a common trend where heating costs are inversely related to outside temperatures.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad