4. Write each of the rational numbers below as a common fraction in its simplest form (without the use of a calculator): \( \begin{array}{lllll}\text { a. } \frac{20}{24} & \text { b. }-\frac{48}{80} & \text { c. } 2 \frac{5}{40} & \text { d. }-7 \frac{25}{200} & \text { e. } 5 \frac{6}{8}\end{array} \) f. \( \frac{85}{170} \) 5. Write the following mixed numbers as improper fractions. \( \begin{array}{llll}\text { a. } 6 \frac{4}{9} & \text { b. }-4 \frac{5}{6} & \text { c. }-11 \frac{2}{3} & \text { d. } 13 \frac{7}{15}\end{array} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To convert each of the rational numbers to their simplest form: a. \(\frac{20}{24} = \frac{5}{6}\) (both numerator and denominator can be divided by 4) b. \(-\frac{48}{80} = -\frac{3}{5}\) (both can be divided by 16) c. \(2 \frac{5}{40} = 2 \frac{1}{8} = \frac{17}{8}\) (the mixed number can be converted to an improper fraction) d. \(-7 \frac{25}{200} = -7 \frac{1}{8} = -\frac{57}{8}\) (again, convert to improper) e. \(5 \frac{6}{8} = 5 \frac{3}{4} = \frac{23}{4}\) (simplified from \(\frac{6}{8}\)) f. \(\frac{85}{170} = \frac{1}{2}\) (both can be divided by 85) Now turning mixed numbers into improper fractions: a. \(6 \frac{4}{9} = \frac{58}{9}\) (multiply 6 by 9 and add 4) b. \(-4 \frac{5}{6} = -\frac{29}{6}\) (similar multiplication and addition) c. \(-11 \frac{2}{3} = -\frac{35}{3}\) d. \(13 \frac{7}{15} = \frac{202}{15}\) (13 times 15 plus 7) Perfect, now you're ready to tackle more fractions like a pro!✏️