Pregunta
upstudy study bank question image url

o) Build polynomial functions with a double root at -2 and nother root at 5 .

Ask by Savage Bond. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

A polynomial with a double root at \(-2\) and another root at \(5\) is: \[ f(x) = (x + 2)^2(x - 5) \] Expanding it gives: \[ f(x) = x^3 - x^2 - 16x - 20 \] You can adjust the leading coefficient \(a\) to scale the polynomial as desired.

Solución

To construct a polynomial function with a **double root at \(-2\)** and another root at \(5\), you can follow these steps: ### 1. **Understanding Roots and Multiplicity** - A **double root** at \(-2\) means that \((x + 2)\) is a factor **twice**. - A **single root** at \(5\) means that \((x - 5)\) is a factor **once**. ### 2. **Constructing the Polynomial** Combine these factors to form the polynomial: \[ f(x) = a(x + 2)^2(x - 5) \] where \(a\) is any non-zero constant (it determines the leading coefficient and can scale the polynomial vertically). ### 3. **Expanding the Polynomial (Optional)** If you prefer the expanded form, you can multiply the factors: \[ \begin{align*} f(x) &= a(x + 2)^2(x - 5) \\ &= a(x^2 + 4x + 4)(x - 5) \\ &= a\left(x^3 + 4x^2 + 4x - 5x^2 - 20x - 20\right) \\ &= a\left(x^3 - x^2 - 16x - 20\right) \\ &= a x^3 - a x^2 - 16a x - 20a \end{align*} \] ### 4. **Example Polynomial** For simplicity, let’s choose \(a = 1\): \[ f(x) = (x + 2)^2(x - 5) = x^3 - x^2 - 16x - 20 \] ### 5. **General Form** Any polynomial with the specified roots can be written as: \[ f(x) = a(x + 2)^2(x - 5) \quad \text{where} \quad a \neq 0 \] You can choose different values of \(a\) to get different polynomial functions that satisfy the root conditions. ### **Graphical Interpretation** - **Double Root at \(-2\):** The graph of the polynomial will touch the x-axis at \(x = -2\) and turn around, indicating a repeated root. - **Single Root at \(5\):** The graph will cross the x-axis at \(x = 5\). ### **Summary** A suitable polynomial with a double root at \(-2\) and another root at \(5\) is: \[ f(x) = (x + 2)^2(x - 5) \] You can expand it to: \[ f(x) = x^3 - x^2 - 16x - 20 \] Feel free to choose any non-zero constant \(a\) to scale the polynomial as needed.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To create a polynomial function with a double root at -2 and another root at 5, you can use the fact that the double root means the factor will be squared. The polynomial can be expressed as: \( f(x) = (x + 2)^2 (x - 5) \). Expanding this gives you \( f(x) = (x^2 + 4x + 4)(x - 5) \), leading to a final polynomial function of \( f(x) = x^3 - x^2 - 16x + 20 \). Polynomials are everywhere! From physics equations that describe motion to algorithms that power search engines, polynomial functions help model complex phenomena. For designers, polynomials can aid in creating curves and shapes in graphics programming, making them essential tools in both art and science.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad