Pregunta
upstudy study bank question image url

6. \( \frac{x+2}{x-1} \div \frac{x+4}{x^{2}+4 x-5} \) a. \( \frac{(x+2)(x+5)}{x+4}, x \neq-5,-4 \) c. \( \frac{(x+2)(x+4)}{(x-1)^{2}(x+5)}, x \neq 1,-5,-4 \) b. \( \frac{(x+2)(x+4)}{(x-1)^{2}(x+5)}, x \neq 1,-5 \) d. \( \frac{(x+2)(x+5)}{x+4}, x \neq 1,-4,-5 \) 7. \( \frac{x^{2}-4}{x-8} \div(x-2) \) a. \( \frac{(x-2)(x+2)}{x-8} \) c. \( \frac{x-2}{x-8} \) b. \( \frac{x-8}{x+2} \) d. \( \frac{x+2}{x-8} \) 8. \( \frac{6}{x^{2}-9}-\frac{1}{x-3}=1 \) a. \( \quad-4 \) b. 3 or -4 c. \( \frac{-1 \pm \sqrt{73}}{2} \) d. 2 9. \( \frac{2}{3 m}+\frac{4}{5 m}=2 \) a. \( \frac{22}{15} \) b. \( \frac{13}{15} \) c. \( \frac{11}{15} \) d. \( \frac{3}{8} \) 10. \( \frac{5}{x+3}=\frac{-2}{x+4} \) a. \( -\frac{26}{5} \) b. \( -\frac{6}{7} \) c. \( -\frac{10}{7} \) d. \( -\frac{26}{7} \)

Ask by Huang Bernard. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

6. \( \frac{(x+2)(x+5)}{x+4}, x \neq -5, -4 \) 7. \( \frac{x+2}{x-8} \) 8. \( 3 \text{ or } -4 \) 9. \( \frac{11}{15} \) 10. \( -\frac{26}{7} \)

Solución

Let's solve each problem step by step. ### Problem 6: \[ \frac{x+2}{x-1} \div \frac{x+4}{x^{2}+4x-5} \] **Step 1: Rewrite the division as multiplication by the reciprocal.** \[ \frac{x+2}{x-1} \cdot \frac{x^{2}+4x-5}{x+4} \] **Step 2: Factor the quadratic expression \(x^{2}+4x-5\).** To factor \(x^{2}+4x-5\), we look for two numbers that multiply to \(-5\) and add to \(4\). These numbers are \(5\) and \(-1\). \[ x^{2}+4x-5 = (x+5)(x-1) \] **Step 3: Substitute the factored form back into the expression.** \[ \frac{x+2}{x-1} \cdot \frac{(x+5)(x-1)}{x+4} \] **Step 4: Cancel the common factor \((x-1)\).** \[ \frac{(x+2)(x+5)}{x+4} \] **Step 5: Identify restrictions.** The restrictions are \(x \neq -5\) and \(x \neq -4\) (from the denominator). **Final Answer for Problem 6:** \[ \frac{(x+2)(x+5)}{x+4}, \quad x \neq -5, -4 \] ### Problem 7: \[ \frac{x^{2}-4}{x-8} \div (x-2) \] **Step 1: Rewrite the division as multiplication by the reciprocal.** \[ \frac{x^{2}-4}{x-8} \cdot \frac{1}{x-2} \] **Step 2: Factor \(x^{2}-4\) (difference of squares).** \[ x^{2}-4 = (x-2)(x+2) \] **Step 3: Substitute the factored form back into the expression.** \[ \frac{(x-2)(x+2)}{x-8} \cdot \frac{1}{x-2} \] **Step 4: Cancel the common factor \((x-2)\).** \[ \frac{x+2}{x-8} \] **Final Answer for Problem 7:** \[ \frac{x+2}{x-8} \] ### Problem 8: \[ \frac{6}{x^{2}-9}-\frac{1}{x-3}=1 \] **Step 1: Factor \(x^{2}-9\) (difference of squares).** \[ x^{2}-9 = (x-3)(x+3) \] **Step 2: Rewrite the equation.** \[ \frac{6}{(x-3)(x+3)} - \frac{1}{x-3} = 1 \] **Step 3: Find a common denominator, which is \((x-3)(x+3)\).** \[ \frac{6 - (x+3)}{(x-3)(x+3)} = 1 \] **Step 4: Simplify the numerator.** \[ \frac{6 - x - 3}{(x-3)(x+3)} = 1 \implies \frac{3 - x}{(x-3)(x+3)} = 1 \] **Step 5: Cross-multiply.** \[ 3 - x = (x-3)(x+3) \] **Step 6: Expand the right side.** \[ 3 - x = x^2 - 9 \] **Step 7: Rearrange the equation.** \[ x^2 + x - 12 = 0 \] **Step 8: Factor the quadratic.** \[ (x+4)(x-3) = 0 \] **Step 9: Solve for \(x\).** \[ x = -4 \quad \text{or} \quad x = 3 \] **Final Answer for Problem 8:** \[ 3 \text{ or } -4 \] ### Problem 9: \[ \frac{2}{3m}+\frac{4}{5m}=2 \] **Step 1: Find a common denominator, which is \(15m\).** \[ \frac{10}{15m} + \frac{12}{15m} = 2 \] **Step 2: Combine the fractions.** \[ \frac{22}{15m} = 2 \] **Step 3: Cross-multiply.** \[ 22 = 30m \] **Step 4: Solve for \(m\).** \[ m = \frac{22}{30} = \frac{11}{15} \] **Final Answer for Problem 9:** \[ \frac{11}{15} \] ### Problem 10: \[ \frac{5}{x+3}=\frac{-2}{x+4} \] **Step 1: Cross-multiply.** \[ 5(x+4) = -2(x+3) \] **Step 2: Expand both sides.** \[ 5x + 20 = -2x - 6 \] **Step 3: Rearrange the equation.** \[ 5x + 2x = -6 - 20 \] \[ 7x = -26 \] **Step 4: Solve for \(x\).** \[ x = -\frac{26}{7} \] **Final Answer for Problem 10:** \[ -\frac{26}{7} \] ### Summary of Answers: 6. \( \frac{(x+2)(x+5)}{x+4}, x \neq -5, -4 \) 7. \( \frac{x+2}{x-8} \) 8. \( 3 \text{ or } -4 \) 9. \( \frac{11}{15} \) 10. \( -\frac{26}{7} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

In the realm of rational expressions, did you know that operations like division can often be turned into multiplication simply by flipping the second fraction? That's called taking the reciprocal! This nifty trick makes it much easier to simplify complex expressions. And remember, when dealing with rational equations, always keep an eye on undefined values (like when the denominator is zero) — they’re the real party poopers in math! Navigating through algebraic fractions can sometimes lead to common pitfalls. One common mistake is failing to factor correctly before performing the operation, which can result in a more complicated expression. Also, don't forget to check your restrictions on the variables — anything that makes a denominator zero is a no-go! Catching these errors early can save you from headaches down the line. Happy calculating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad