6. \( \frac{x+2}{x-1} \div \frac{x+4}{x^{2}+4 x-5} \) a. \( \frac{(x+2)(x+5)}{x+4}, x \neq-5,-4 \) c. \( \frac{(x+2)(x+4)}{(x-1)^{2}(x+5)}, x \neq 1,-5,-4 \) b. \( \frac{(x+2)(x+4)}{(x-1)^{2}(x+5)}, x \neq 1,-5 \) d. \( \frac{(x+2)(x+5)}{x+4}, x \neq 1,-4,-5 \) 7. \( \frac{x^{2}-4}{x-8} \div(x-2) \) a. \( \frac{(x-2)(x+2)}{x-8} \) c. \( \frac{x-2}{x-8} \) b. \( \frac{x-8}{x+2} \) d. \( \frac{x+2}{x-8} \) 8. \( \frac{6}{x^{2}-9}-\frac{1}{x-3}=1 \) a. \( \quad-4 \) b. 3 or -4 c. \( \frac{-1 \pm \sqrt{73}}{2} \) d. 2 9. \( \frac{2}{3 m}+\frac{4}{5 m}=2 \) a. \( \frac{22}{15} \) b. \( \frac{13}{15} \) c. \( \frac{11}{15} \) d. \( \frac{3}{8} \) 10. \( \frac{5}{x+3}=\frac{-2}{x+4} \) a. \( -\frac{26}{5} \) b. \( -\frac{6}{7} \) c. \( -\frac{10}{7} \) d. \( -\frac{26}{7} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
In the realm of rational expressions, did you know that operations like division can often be turned into multiplication simply by flipping the second fraction? That's called taking the reciprocal! This nifty trick makes it much easier to simplify complex expressions. And remember, when dealing with rational equations, always keep an eye on undefined values (like when the denominator is zero) — they’re the real party poopers in math! Navigating through algebraic fractions can sometimes lead to common pitfalls. One common mistake is failing to factor correctly before performing the operation, which can result in a more complicated expression. Also, don't forget to check your restrictions on the variables — anything that makes a denominator zero is a no-go! Catching these errors early can save you from headaches down the line. Happy calculating!