Pregunta
upstudy study bank question image url

N \( \$ 750 \) at \( 4 \% \) for 10 years

Ask by Carter Tucker. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The future value of $750 at 4% for 10 years is approximately $1110.18.

Solución

To calculate the future value of an investment, we can use the formula for compound interest: \[ FV = PV \times (1 + r)^n \] Where: - \( FV \) is the future value of the investment - \( PV \) is the present value of the investment (initial amount) - \( r \) is the annual interest rate (in decimal form) - \( n \) is the number of years the money is invested for Given: - Present value (PV) = $750 - Annual interest rate (r) = 4% = 0.04 - Number of years (n) = 10 Substitute the values into the formula: \[ FV = 750 \times (1 + 0.04)^{10} \] Now, we can calculate the future value of the investment. Calculate the value by following steps: - step0: Calculate: \(750\left(1+0.04\right)^{10}\) - step1: Add the numbers: \(750\times 1.04^{10}\) - step2: Convert the expressions: \(750\left(\frac{26}{25}\right)^{10}\) - step3: Simplify: \(750\times \frac{26^{10}}{25^{10}}\) - step4: Rewrite the expression: \(125\times 6\times \frac{26^{10}}{25^{10}}\) - step5: Rewrite the expression: \(5^{3}\times 6\times \frac{26^{10}}{5^{20}}\) - step6: Reduce the numbers: \(6\times \frac{26^{10}}{5^{17}}\) - step7: Multiply: \(\frac{6\times 26^{10}}{5^{17}}\) The future value of the investment of $750 at an annual interest rate of 4% for 10 years is approximately $1110.18.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that if you invest $750 at a 4% annual interest rate for 10 years using simple interest, you'd earn a total of $300 in interest? That means your total amount after a decade would be $1,050! It's a great way to watch your money grow, even if it takes a bit of time. Now, if you want to kick it up a notch, consider looking into compound interest. By compounding your interest annually, your money would grow even faster! Just imagine the difference: with compound interest, after 10 years, you’d actually have around $1,108. This shows the magic of letting your money work for you over time!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad