Responder
Here are the simplified answers for each expression:
a. \( \frac{1}{4} \)
b. \( \frac{1}{6} \)
c. \( \frac{1}{3} \)
d. \( 1 \)
e. \( \frac{3}{4} \)
f. \( \frac{1}{4} \)
g. \( \frac{4}{3} \) or \( 1 \frac{1}{3} \)
h. \( 0 \)
i. \( \frac{18}{55} \)
j. \( -\frac{3}{2} \) or \( -1.5 \)
k. \( \frac{11}{5} \) or \( 2.2 \)
m. \( \frac{10}{63} \) (The given equality is incorrect)
n. \( \frac{2a}{3b} \)
Solución
Sure! Let's evaluate each of the given expressions step by step.
### a. \( \frac{1}{2} \times \frac{1}{2} \)
Multiply the numerators and denominators:
\[
\frac{1 \times 1}{2 \times 2} = \frac{1}{4}
\]
**Answer:** \( \frac{1}{4} \)
---
### b. \( \frac{1}{2} \times \frac{1}{3} \)
\[
\frac{1 \times 1}{2 \times 3} = \frac{1}{6}
\]
**Answer:** \( \frac{1}{6} \)
---
### c. \( \frac{1}{2} \times \frac{2}{3} \)
\[
\frac{1 \times 2}{2 \times 3} = \frac{2}{6} = \frac{1}{3}
\]
**Answer:** \( \frac{1}{3} \)
---
### d. \( \frac{3}{2} \times \frac{2}{3} \)
\[
\frac{3 \times 2}{2 \times 3} = \frac{6}{6} = 1
\]
**Answer:** \( 1 \)
---
### e. \( \frac{2}{5} \times \frac{15}{8} \)
Simplify before multiplying:
\[
\frac{2}{5} \times \frac{15}{8} = \frac{2 \times 15}{5 \times 8} = \frac{30}{40} = \frac{3}{4}
\]
**Answer:** \( \frac{3}{4} \)
---
### f. \( \frac{3}{7} \times \frac{7}{12} \)
Cancel out the common factor (7):
\[
\frac{3}{7} \times \frac{7}{12} = \frac{3 \times \cancel{7}}{\cancel{7} \times 12} = \frac{3}{12} = \frac{1}{4}
\]
**Answer:** \( \frac{1}{4} \)
---
### g. \( \frac{24}{27} \times \frac{12}{8} \)
Simplify the fractions first:
\[
\frac{24}{27} = \frac{8}{9} \quad \text{and} \quad \frac{12}{8} = \frac{3}{2}
\]
Now multiply:
\[
\frac{8}{9} \times \frac{3}{2} = \frac{8 \times 3}{9 \times 2} = \frac{24}{18} = \frac{4}{3} \quad \text{or} \quad 1 \frac{1}{3}
\]
**Answer:** \( \frac{4}{3} \) or \( 1 \frac{1}{3} \)
---
### h. \( \frac{0}{5} \times \frac{3}{4} \)
Any number multiplied by zero is zero:
\[
\frac{0}{5} \times \frac{3}{4} = 0 \times \frac{3}{4} = 0
\]
**Answer:** \( 0 \)
---
### i. \( \frac{2}{3} \times \frac{3}{5} \times \frac{9}{11} \)
Multiply the numerators and denominators:
\[
\frac{2 \times 3 \times 9}{3 \times 5 \times 11} = \frac{54}{165}
\]
Simplify by dividing numerator and denominator by 3:
\[
\frac{54 \div 3}{165 \div 3} = \frac{18}{55}
\]
**Answer:** \( \frac{18}{55} \)
---
### j. \( \frac{2}{4} - \frac{2}{5} \times \frac{15}{3} \)
Follow the order of operations (PEMDAS/BODMAS):
1. **Multiplication first:**
\[
\frac{2}{5} \times \frac{15}{3} = \frac{2 \times 15}{5 \times 3} = \frac{30}{15} = 2
\]
2. **Then subtraction:**
\[
\frac{2}{4} - 2 = \frac{1}{2} - 2 = \frac{1}{2} - \frac{4}{2} = -\frac{3}{2}
\]
**Answer:** \( -\frac{3}{2} \) or \( -1.5 \)
---
### k. \( \frac{3}{2}\left(\frac{4}{5} + \frac{2}{3}\right) \)
1. **Add the fractions inside the parentheses:**
Find a common denominator (15):
\[
\frac{4}{5} = \frac{12}{15} \quad \text{and} \quad \frac{2}{3} = \frac{10}{15}
\]
\[
\frac{12}{15} + \frac{10}{15} = \frac{22}{15}
\]
2. **Multiply by \( \frac{3}{2} \):**
\[
\frac{3}{2} \times \frac{22}{15} = \frac{66}{30} = \frac{11}{5} \quad \text{or} \quad 2.2
\]
**Answer:** \( \frac{11}{5} \) or \( 2.2 \)
---
### m. \( \frac{2}{9} \times \frac{5}{7} = \frac{10}{12} \)
Let's evaluate and check the given equality.
**Calculation:**
\[
\frac{2}{9} \times \frac{5}{7} = \frac{10}{63}
\]
**Given Equality:**
\[
\frac{10}{63} \neq \frac{10}{12}
\]
It appears there's an error in the provided equality.
**Correct Answer:** \( \frac{10}{63} \)
---
### n. \( \frac{2}{3} \times \frac{a}{b} \)
Multiply the numerators and denominators:
\[
\frac{2 \times a}{3 \times b} = \frac{2a}{3b}
\]
**Answer:** \( \frac{2a}{3b} \)
---
If you have any further questions or need additional explanations, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución