Pregunta
upstudy study bank question image url

FLIGHT Two planes take off from the same airstrip. The first plane flies west for 150 miles and then flies \( 30^{\circ} \) south of west for 220 miles. The second plane flies east for 220 miles and then flies \( x^{\circ} \) south of east for 150 miles. If \( x<30 \), which plane is farther from the airstrip after the second leg? Justify your answer.

Ask by Joseph Davison. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Plane 1 is farther from the airstrip after the second leg.

Solución

To determine which plane is farther from the airstrip after the second leg of their flights, we will break down the movements of each plane into their respective components and calculate their final positions. ### Plane 1: 1. **First leg**: Flies west for 150 miles. - Position after first leg: \( (-150, 0) \) (in Cartesian coordinates, where west is negative x-direction and north is positive y-direction). 2. **Second leg**: Flies \( 30^{\circ} \) south of west for 220 miles. - The angle south of west means we need to find the x and y components: - \( x_2 = -220 \cos(30^{\circ}) \) - \( y_2 = -220 \sin(30^{\circ}) \) Using the values of cosine and sine: - \( \cos(30^{\circ}) = \frac{\sqrt{3}}{2} \) - \( \sin(30^{\circ}) = \frac{1}{2} \) Therefore: - \( x_2 = -220 \cdot \frac{\sqrt{3}}{2} = -110\sqrt{3} \) - \( y_2 = -220 \cdot \frac{1}{2} = -110 \) Now, we can find the total position of Plane 1: - Total x-coordinate: \( -150 - 110\sqrt{3} \) - Total y-coordinate: \( -110 \) ### Plane 2: 1. **First leg**: Flies east for 220 miles. - Position after first leg: \( (220, 0) \). 2. **Second leg**: Flies \( x^{\circ} \) south of east for 150 miles. - The angle south of east means we need to find the x and y components: - \( x_2 = 150 \cos(x^{\circ}) \) - \( y_2 = -150 \sin(x^{\circ}) \) Therefore, the total position of Plane 2 is: - Total x-coordinate: \( 220 + 150 \cos(x^{\circ}) \) - Total y-coordinate: \( -150 \sin(x^{\circ}) \) ### Distance from the airstrip: Now we can calculate the distance from the airstrip for both planes using the distance formula \( d = \sqrt{x^2 + y^2} \). 1. **Distance for Plane 1**: \[ d_1 = \sqrt{(-150 - 110\sqrt{3})^2 + (-110)^2} \] 2. **Distance for Plane 2**: \[ d_2 = \sqrt{(220 + 150 \cos(x^{\circ}))^2 + (-150 \sin(x^{\circ}))^2} \] ### Comparison: To determine which plane is farther, we will compare \( d_1 \) and \( d_2 \). Let's calculate \( d_1 \) and \( d_2 \) using the expressions derived above. We will first calculate \( d_1 \) and then \( d_2 \) for \( x < 30 \). ### Calculating \( d_1 \): \[ d_1 = \sqrt{(-150 - 110\sqrt{3})^2 + (-110)^2} \] ### Calculating \( d_2 \): \[ d_2 = \sqrt{(220 + 150 \cos(x^{\circ}))^2 + (-150 \sin(x^{\circ}))^2} \] Now, let's compute these distances. Calculate the value by following steps: - step0: Calculate: \(\left(-150-110\sqrt{3}\right)^{2}+\left(-110\right)^{2}\) - step1: Simplify: \(\left(150+110\sqrt{3}\right)^{2}+110^{2}\) - step2: Evaluate the power: \(\left(150+110\sqrt{3}\right)^{2}+12100\) - step3: Evaluate the power: \(58800+33000\sqrt{3}+12100\) - step4: Add the numbers: \(70900+33000\sqrt{3}\) Calculate or simplify the expression \( (220 + 150*\cos(x))^2 + (-150*\sin(x))^2 \). Simplify the expression by following steps: - step0: Solution: \(\left(220+150\cos\left(x\right)\right)^{2}+\left(-150\sin\left(x\right)\right)^{2}\) - step1: Transform the expression: \(100\left(22+15\cos\left(x\right)\right)^{2}+22500\sin^{2}\left(x\right)\) - step2: Transform the expression: \(100\left(22+15\cos\left(x\right)\right)^{2}+22500-22500\cos^{2}\left(x\right)\) - step3: Transform the expression: \(70900+66000\cos\left(x\right)\) We have calculated the distances for both planes: 1. **Distance for Plane 1**: \[ d_1 = \sqrt{70900 + 33000\sqrt{3}} \] 2. **Distance for Plane 2**: \[ d_2 = \sqrt{70900 + 66000\cos(x)} \] ### Comparison of Distances: To determine which plane is farther from the airstrip, we need to compare \( d_1^2 \) and \( d_2^2 \) (since the square root function is increasing, comparing the squares will yield the same result). - \( d_1^2 = 70900 + 33000\sqrt{3} \) - \( d_2^2 = 70900 + 66000\cos(x) \) ### Analyzing the Comparison: We need to compare: \[ 70900 + 33000\sqrt{3} \quad \text{and} \quad 70900 + 66000\cos(x) \] This simplifies to comparing: \[ 33000\sqrt{3} \quad \text{and} \quad 66000\cos(x) \] ### Since \( x < 30^{\circ} \): - The maximum value of \( \cos(x) \) when \( x < 30^{\circ} \) is \( \cos(30^{\circ}) = \frac{\sqrt{3}}{2} \). - Therefore, \( 66000\cos(x) \) can be at most \( 66000 \cdot \frac{\sqrt{3}}{2} = 33000\sqrt{3} \). ### Conclusion: Since \( 33000\sqrt{3} \) is equal to \( 66000\cos(x) \) when \( x = 30^{\circ} \) and \( \cos(x) \) decreases as \( x \) decreases from \( 30^{\circ} \), we can conclude that: - For \( x < 30^{\circ} \), \( 66000\cos(x) < 33000\sqrt{3} \). Thus, we find that: \[ d_1 > d_2 \] ### Final Answer: **Plane 1 is farther from the airstrip after the second leg.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To compare the distances of the two planes from the airstrip, we can use some trigonometry to determine their final positions. First plane: - It flies 150 miles west: Position = (-150, 0). - Next, it flies 220 miles at \( 30^{\circ} \) south of west. We can break this down: - The westward component: \( 220 \cdot \cos(30^{\circ}) = 220 \cdot \frac{\sqrt{3}}{2} \approx 190.52 \) miles. - The southward component: \( 220 \cdot \sin(30^{\circ}) = 220 \cdot \frac{1}{2} = 110 \) miles. Combining these, the new position of the first plane is: - \( x \) position: -150 - 190.52 = -340.52 - \( y \) position: -110 So, the coordinates are roughly (-340.52, -110). Second plane: - It flies 220 miles east: Position = (220, 0). - Next, it flies 150 miles at \( x^{\circ} \) south of east. Breaking this down: - The eastward component: \( 150 \cdot \cos(x^{\circ}) \) - The southward component: \( 150 \cdot \sin(x^{\circ}) \) Thus, the new position of the second plane is: - \( x \) position: \( 220 + 150 \cdot \cos(x^{\circ}) \) - \( y \) position: \( -150 \cdot \sin(x^{\circ}) \) To find the distances from the origin to each plane's position, we use the distance formula \( \sqrt{x^2 + y^2} \). Distance of the first plane: \[ D_1 = \sqrt{(-340.52)^2 + (-110)^2} \approx \sqrt{116,955.79 + 12,100} \approx \sqrt{129,055.79} \approx 359.64 \text{ miles} \] Distance of the second plane: \[ D_2 = \sqrt{(220 + 150 \cdot \cos(x))^2 + (150 \cdot \sin(x))^2} \] Since \( x < 30 \), \( \cos(x) \) will remain positive and \( 150 \cdot \cos(x) \) will be a relatively larger adjustment on the eastward position compared to its negative southward displacement. By checking the maximum distance when \( x = 0 \) and the angle increases (to 30) yields, - At \( x = 0 \), the second plane's distance is 370 miles or more when x increases from 0 to slightly lower than 30, - The distance moves towards less than second plane’s maximum adjustment south, and thus remains within those bounds. Therefore, the first plane leads on initial leg distance, but with the second leg closer on adjustments, the second's overall distance begins further beyond the limits. Thus, the second plane is farther from the airstrip after the second leg.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad