Pregunta
upstudy study bank question image url

4) If \( (4-x), 3 \) and \( \sqrt{2 x+3} \) are the first three terms of an arithmetic sequence: \( \begin{array}{ll}\text { a) Determine the value of } x & \text { b) Which term is equal to }-23 ? \\ \text { 5) If } q ; 2 q+2 ; 5 q+3 \text { form an arithmetic sequence: } \\ \begin{array}{ll}\text { a) Determine the value of } q & \text { b) Determine the value of the } 15^{\text {th }} \text { term. } \\ \text { 6) If } 2 p-1 ; p+1 ; p-1 \text { form a geometric sequence and } p \neq 0\end{array} \\ \begin{array}{ll}\text { a) What are the first three terms? }\end{array} \\ \text { 7) If } 8 ; 2 x ; 2 y \text { forms an arithmetic sequence and } 2 x ; 2 y ; 36 \text { forms a geometric sequence deterr } \\ \text { the values of } x \text { and } y \text {. }\end{array} \)

Ask by Martinez Chambers. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 4:** - **a) \( x = -1 \)** - **b) The 15th term is \( -23 \).** **Problem 5:** - **a) \( q = \frac{1}{2} \)** - **b) The 15th term is \( \frac{71}{2} \) or \( 35.5 \).** **Problem 6:** - **a) First three terms: \( 9 \), \( 6 \), \( 4 \).** **Problem 7:** - **Possible solutions:** - \( x = 8 \), \( y = 12 \) - \( x = 0.5 \), \( y = -3 \)

Solución

Let's solve each problem step by step. --- ### **Problem 4** **Given:** - Three terms of an arithmetic sequence: \( (4 - x) \), \( 3 \), and \( \sqrt{2x + 3} \). #### **a) Determine the value of \( x \).** **Solution:** In an arithmetic sequence, the difference between consecutive terms is constant. Therefore: \[ 3 - (4 - x) = \sqrt{2x + 3} - 3 \] Simplify the left side: \[ 3 - 4 + x = x - 1 \] Set the differences equal: \[ x - 1 = \sqrt{2x + 3} - 3 \] Rearrange the equation: \[ x + 2 = \sqrt{2x + 3} \] Square both sides to eliminate the square root: \[ (x + 2)^2 = 2x + 3 \\ x^2 + 4x + 4 = 2x + 3 \] Bring all terms to one side: \[ x^2 + 2x + 1 = 0 \\ (x + 1)^2 = 0 \] **Solution:** \[ x = -1 \] **Verification:** - First term: \( 4 - (-1) = 5 \) - Second term: \( 3 \) - Third term: \( \sqrt{2(-1) + 3} = \sqrt{1} = 1 \) Check the common difference: \[ 3 - 5 = -2 \\ 1 - 3 = -2 \] The differences are equal, confirming \( x = -1 \) is correct. #### **b) Which term is equal to \( -23 \)?** **Solution:** First term (\( a_1 \)) = 5 Common difference (\( d \)) = \( 3 - 5 = -2 \) The \( n \)-th term of an arithmetic sequence is given by: \[ a_n = a_1 + (n - 1)d \] Set \( a_n = -23 \): \[ -23 = 5 + (n - 1)(-2) \\ -23 = 5 - 2n + 2 \\ -23 = 7 - 2n \\ -30 = -2n \\ n = 15 \] **Answer:** The 15th term is equal to \( -23 \). --- ### **Problem 5** **Given:** - Three terms of an arithmetic sequence: \( q \), \( 2q + 2 \), \( 5q + 3 \). #### **a) Determine the value of \( q \).** **Solution:** In an arithmetic sequence: \[ (2q + 2) - q = (5q + 3) - (2q + 2) \] Simplify: \[ q + 2 = 3q + 1 \\ q + 2 - 3q -1 = 0 \\ -2q +1 = 0 \\ 2q = 1 \\ q = \frac{1}{2} \] #### **b) Determine the value of the 15th term.** **Solution:** First term (\( a_1 \)) = \( q = \frac{1}{2} \) Common difference (\( d \)) = \( (2q + 2) - q = \frac{1}{2} + 2 = \frac{5}{2} \) The \( n \)-th term: \[ a_n = a_1 + (n - 1)d \] For \( n = 15 \): \[ a_{15} = \frac{1}{2} + 14 \times \frac{5}{2} = \frac{1}{2} + 35 = \frac{71}{2} = 35.5 \] **Answer:** The 15th term is \( \frac{71}{2} \) or \( 35.5 \). --- ### **Problem 6** **Given:** - Three terms form a geometric sequence: \( 2p - 1 \), \( p + 1 \), \( p - 1 \), with \( p \neq 0 \). #### **a) What are the first three terms?** **Solution:** For a geometric sequence, the ratio between consecutive terms is constant: \[ \frac{p + 1}{2p - 1} = \frac{p - 1}{p + 1} \] Cross-multiply: \[ (p + 1)^2 = (2p - 1)(p - 1) \] Expand both sides: \[ p^2 + 2p + 1 = 2p^2 - 3p + 1 \] Bring all terms to one side: \[ p^2 + 2p + 1 - 2p^2 + 3p - 1 = 0 \\ -p^2 + 5p = 0 \\ p(p - 5) = 0 \] Since \( p \neq 0 \), \( p = 5 \). **First three terms:** \[ 2p - 1 = 9, \quad p + 1 = 6, \quad p - 1 = 4 \] **Answer:** The first three terms are \( 9 \), \( 6 \), and \( 4 \). --- ### **Problem 7** **Given:** - Two sequences: - Arithmetic: \( 8 \), \( 2x \), \( 2y \) - Geometric: \( 2x \), \( 2y \), \( 36 \) **Determine \( x \) and \( y \).** **Solution:** **Step 1: Arithmetic Sequence Condition** For arithmetic sequence \( 8 \), \( 2x \), \( 2y \): \[ 2x - 8 = 2y - 2x \\ 4x - 8 = 2y \\ 2x - 4 = y \quad \text{(Equation 1)} \] **Step 2: Geometric Sequence Condition** For geometric sequence \( 2x \), \( 2y \), \( 36 \): \[ \frac{2y}{2x} = \frac{36}{2y} \\ \frac{y}{x} = \frac{36}{2y} \\ y^2 = 18x \quad \text{(Equation 2)} \] **Step 3: Substitute Equation 1 into Equation 2** From Equation 1: \[ y = 2x - 4 \] Substitute into Equation 2: \[ (2x - 4)^2 = 18x \\ 4x^2 - 16x + 16 = 18x \\ 4x^2 - 34x + 16 = 0 \] **Step 4: Solve the Quadratic Equation** \[ x = \frac{34 \pm \sqrt{34^2 - 4 \cdot 4 \cdot 16}}{2 \cdot 4} \\ x = \frac{34 \pm \sqrt{1156 - 256}}{8} \\ x = \frac{34 \pm \sqrt{900}}{8} \\ x = \frac{34 \pm 30}{8} \] **Possible Values:** 1. \( x = \frac{34 + 30}{8} = \frac{64}{8} = 8 \) - \( y = 2(8) - 4 = 12 \) 2. \( x = \frac{34 - 30}{8} = \frac{4}{8} = 0.5 \) - \( y = 2(0.5) - 4 = -3 \) **Verification:** - **Case 1:** \( x = 8 \), \( y = 12 \) - Arithmetic sequence: \( 8 \), \( 16 \), \( 24 \) - Common difference: \( 8 \) - Geometric sequence: \( 16 \), \( 24 \), \( 36 \) - Common ratio: \( \frac{24}{16} = \frac{36}{24} = 1.5 \) - **Case 2:** \( x = 0.5 \), \( y = -3 \) - Arithmetic sequence: \( 8 \), \( 1 \), \( -6 \) - Common difference: \( -7 \) - Geometric sequence: \( 1 \), \( -6 \), \( 36 \) - Common ratio: \( \frac{-6}{1} = \frac{36}{-6} = -6 \) Both cases satisfy the conditions. **Answer:** There are two possible solutions: - \( x = 8 \) and \( y = 12 \) - \( x = 0.5 \) and \( y = -3 \) ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The fascinating world of arithmetic sequences has roots in ancient mathematics! These sequences were studied as early as 300 BC, and mathematicians like Euclid explored their properties in the context of number theory. Fast forward to today, we find arithmetic sequences everywhere, from the natural number line to financial calculations—when you manage your money with fixed increments, you're using the principles of these sequences! When it comes to real-world applications, understanding arithmetic sequences can help in planning and budgeting. For instance, if you’re saving a certain amount of money each month, the total amount after several months forms an arithmetic sequence. It’s also crucial in assessing your loans, where you might be paying a fixed amount every month. Knowing how to deal with these sequences can empower you to take control of your finances!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad