Responder
**Problem 4:**
- **a) \( x = -1 \)**
- **b) The 15th term is \( -23 \).**
**Problem 5:**
- **a) \( q = \frac{1}{2} \)**
- **b) The 15th term is \( \frac{71}{2} \) or \( 35.5 \).**
**Problem 6:**
- **a) First three terms: \( 9 \), \( 6 \), \( 4 \).**
**Problem 7:**
- **Possible solutions:**
- \( x = 8 \), \( y = 12 \)
- \( x = 0.5 \), \( y = -3 \)
Solución
Let's solve each problem step by step.
---
### **Problem 4**
**Given:**
- Three terms of an arithmetic sequence: \( (4 - x) \), \( 3 \), and \( \sqrt{2x + 3} \).
#### **a) Determine the value of \( x \).**
**Solution:**
In an arithmetic sequence, the difference between consecutive terms is constant. Therefore:
\[
3 - (4 - x) = \sqrt{2x + 3} - 3
\]
Simplify the left side:
\[
3 - 4 + x = x - 1
\]
Set the differences equal:
\[
x - 1 = \sqrt{2x + 3} - 3
\]
Rearrange the equation:
\[
x + 2 = \sqrt{2x + 3}
\]
Square both sides to eliminate the square root:
\[
(x + 2)^2 = 2x + 3 \\
x^2 + 4x + 4 = 2x + 3
\]
Bring all terms to one side:
\[
x^2 + 2x + 1 = 0 \\
(x + 1)^2 = 0
\]
**Solution:**
\[
x = -1
\]
**Verification:**
- First term: \( 4 - (-1) = 5 \)
- Second term: \( 3 \)
- Third term: \( \sqrt{2(-1) + 3} = \sqrt{1} = 1 \)
Check the common difference:
\[
3 - 5 = -2 \\
1 - 3 = -2
\]
The differences are equal, confirming \( x = -1 \) is correct.
#### **b) Which term is equal to \( -23 \)?**
**Solution:**
First term (\( a_1 \)) = 5
Common difference (\( d \)) = \( 3 - 5 = -2 \)
The \( n \)-th term of an arithmetic sequence is given by:
\[
a_n = a_1 + (n - 1)d
\]
Set \( a_n = -23 \):
\[
-23 = 5 + (n - 1)(-2) \\
-23 = 5 - 2n + 2 \\
-23 = 7 - 2n \\
-30 = -2n \\
n = 15
\]
**Answer:**
The 15th term is equal to \( -23 \).
---
### **Problem 5**
**Given:**
- Three terms of an arithmetic sequence: \( q \), \( 2q + 2 \), \( 5q + 3 \).
#### **a) Determine the value of \( q \).**
**Solution:**
In an arithmetic sequence:
\[
(2q + 2) - q = (5q + 3) - (2q + 2)
\]
Simplify:
\[
q + 2 = 3q + 1 \\
q + 2 - 3q -1 = 0 \\
-2q +1 = 0 \\
2q = 1 \\
q = \frac{1}{2}
\]
#### **b) Determine the value of the 15th term.**
**Solution:**
First term (\( a_1 \)) = \( q = \frac{1}{2} \)
Common difference (\( d \)) = \( (2q + 2) - q = \frac{1}{2} + 2 = \frac{5}{2} \)
The \( n \)-th term:
\[
a_n = a_1 + (n - 1)d
\]
For \( n = 15 \):
\[
a_{15} = \frac{1}{2} + 14 \times \frac{5}{2} = \frac{1}{2} + 35 = \frac{71}{2} = 35.5
\]
**Answer:**
The 15th term is \( \frac{71}{2} \) or \( 35.5 \).
---
### **Problem 6**
**Given:**
- Three terms form a geometric sequence: \( 2p - 1 \), \( p + 1 \), \( p - 1 \), with \( p \neq 0 \).
#### **a) What are the first three terms?**
**Solution:**
For a geometric sequence, the ratio between consecutive terms is constant:
\[
\frac{p + 1}{2p - 1} = \frac{p - 1}{p + 1}
\]
Cross-multiply:
\[
(p + 1)^2 = (2p - 1)(p - 1)
\]
Expand both sides:
\[
p^2 + 2p + 1 = 2p^2 - 3p + 1
\]
Bring all terms to one side:
\[
p^2 + 2p + 1 - 2p^2 + 3p - 1 = 0 \\
-p^2 + 5p = 0 \\
p(p - 5) = 0
\]
Since \( p \neq 0 \), \( p = 5 \).
**First three terms:**
\[
2p - 1 = 9, \quad p + 1 = 6, \quad p - 1 = 4
\]
**Answer:**
The first three terms are \( 9 \), \( 6 \), and \( 4 \).
---
### **Problem 7**
**Given:**
- Two sequences:
- Arithmetic: \( 8 \), \( 2x \), \( 2y \)
- Geometric: \( 2x \), \( 2y \), \( 36 \)
**Determine \( x \) and \( y \).**
**Solution:**
**Step 1: Arithmetic Sequence Condition**
For arithmetic sequence \( 8 \), \( 2x \), \( 2y \):
\[
2x - 8 = 2y - 2x \\
4x - 8 = 2y \\
2x - 4 = y \quad \text{(Equation 1)}
\]
**Step 2: Geometric Sequence Condition**
For geometric sequence \( 2x \), \( 2y \), \( 36 \):
\[
\frac{2y}{2x} = \frac{36}{2y} \\
\frac{y}{x} = \frac{36}{2y} \\
y^2 = 18x \quad \text{(Equation 2)}
\]
**Step 3: Substitute Equation 1 into Equation 2**
From Equation 1:
\[
y = 2x - 4
\]
Substitute into Equation 2:
\[
(2x - 4)^2 = 18x \\
4x^2 - 16x + 16 = 18x \\
4x^2 - 34x + 16 = 0
\]
**Step 4: Solve the Quadratic Equation**
\[
x = \frac{34 \pm \sqrt{34^2 - 4 \cdot 4 \cdot 16}}{2 \cdot 4} \\
x = \frac{34 \pm \sqrt{1156 - 256}}{8} \\
x = \frac{34 \pm \sqrt{900}}{8} \\
x = \frac{34 \pm 30}{8}
\]
**Possible Values:**
1. \( x = \frac{34 + 30}{8} = \frac{64}{8} = 8 \)
- \( y = 2(8) - 4 = 12 \)
2. \( x = \frac{34 - 30}{8} = \frac{4}{8} = 0.5 \)
- \( y = 2(0.5) - 4 = -3 \)
**Verification:**
- **Case 1:** \( x = 8 \), \( y = 12 \)
- Arithmetic sequence: \( 8 \), \( 16 \), \( 24 \)
- Common difference: \( 8 \)
- Geometric sequence: \( 16 \), \( 24 \), \( 36 \)
- Common ratio: \( \frac{24}{16} = \frac{36}{24} = 1.5 \)
- **Case 2:** \( x = 0.5 \), \( y = -3 \)
- Arithmetic sequence: \( 8 \), \( 1 \), \( -6 \)
- Common difference: \( -7 \)
- Geometric sequence: \( 1 \), \( -6 \), \( 36 \)
- Common ratio: \( \frac{-6}{1} = \frac{36}{-6} = -6 \)
Both cases satisfy the conditions.
**Answer:**
There are two possible solutions:
- \( x = 8 \) and \( y = 12 \)
- \( x = 0.5 \) and \( y = -3 \)
---
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución