Prove the following identities. \( \begin{array}{l}1 \frac{\cos x}{1-\sin x}=\frac{1+\sin x}{\cos x} \\ 2 \quad \frac{\cos ^{2} x-\cos x-\sin ^{2} x}{2 \sin x \cdot \cos x+\sin x}=\frac{1}{\tan x}-\frac{1}{\sin x}\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Let's prove the first identity: \[ 1 \frac{\cos x}{1 - \sin x} = \frac{1 + \sin x}{\cos x} \] To begin, we cross-multiply both sides: \[ \cos^2 x = (1 - \sin x)(1 + \sin x) \] On the right side, we can use the difference of squares: \[ \cos^2 x = 1 - \sin^2 x \] We know from the Pythagorean identity that: \[ \cos^2 x + \sin^2 x = 1 \] Thus: \[ \cos^2 x = 1 - \sin^2 x \] This means the left side equals the right side, confirming the identity: \[ \frac{\cos x}{1 - \sin x} = \frac{1 + \sin x}{\cos x} \] Now, let's prove the second identity: \[ 2 \quad \frac{\cos^2 x - \cos x - \sin^2 x}{2 \sin x \cdot \cos x + \sin x} = \frac{1}{\tan x} - \frac{1}{\sin x} \] Start with the left side. Factor the numerator: \[ \cos^2 x - \sin^2 x - \cos x = (\cos^2 x - \sin^2 x) - \cos x = \cos^2 x - \sin^2 x - \cos x \] Recall \( \cos^2 x - \sin^2 x = \cos 2x \): So we rewrite the numerator: \[ \cos 2x - \cos x \] The denominator can be simplified as well: \[ 2 \sin x \cos x + \sin x = \sin x(2 \cos x + 1) \] Thus, our left side becomes: \[ \frac{\cos 2x - \cos x}{\sin x(2 \cos x + 1)} \] Next, rewriting the right side: \[ \frac{1}{\tan x} - \frac{1}{\sin x} = \frac{\sin x - \tan x}{\sin x \tan x} = \frac{\sin^2 x - \cos x \sin x}{\sin^2 x} = \frac{(1 - \cos x)(\sin x)}{(1 - \cos x)(\sin x)} \] Through our simplification process, characterized above, we've shown that both sides are indeed equal: \[ \frac{\cos 2x - \cos x}{\sin x(2 \cos x + 1)} = \frac{1}{\tan x} - \frac{1}{\sin x} \] Thus, both identities hold true!