Pregunta
upstudy study bank question image url

5 Find the value of \( n \) if: a \( 2+4+8+\ldots \) to \( n \) terms \( =1022 \) b \( 6-18+54+\ldots \) to \( n \) terms \( =-120 \) c \( \sum_{r=1}^{n} 3 \cdot 2^{r-1}=381 \) d \( \sum_{i=1}^{n} \frac{1}{5}(3)^{r-1}=24 \frac{1}{5} \) e \( \sum_{k=1}^{n}(-8) \cdot(0,5)^{k-1}=-\frac{63}{4} \)

Ask by Gibson Burton. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The values of \( n \) are: - a. 9 - b. 4 - c. 7 - d. 5 - e. 6

Solución

Let's solve each part step-by-step. --- ### **a. \( 2 + 4 + 8 + \ldots \) to \( n \) terms \( = 1022 \)** This is a geometric series with: - First term \( a = 2 \) - Common ratio \( r = 2 \) - Sum formula: \( S_n = a \frac{r^n - 1}{r - 1} \) Substituting the known values: \[ 1022 = 2 \frac{2^n - 1}{2 - 1} \\ 1022 = 2(2^n - 1) \\ 2^n - 1 = 511 \\ 2^n = 512 \\ 2^9 = 512 \\ \boxed{n = 9} \] --- ### **b. \( 6 - 18 + 54 + \ldots \) to \( n \) terms \( = -120 \)** This is a geometric series with: - First term \( a = 6 \) - Common ratio \( r = -3 \) - Sum formula: \( S_n = a \frac{1 - r^n}{1 - r} \) Substituting the known values: \[ -120 = 6 \frac{1 - (-3)^n}{1 - (-3)} \\ -120 = 6 \frac{1 - (-3)^n}{4} \\ -480 = 6(1 - (-3)^n) \\ -80 = 1 - (-3)^n \\ (-3)^n = 81 \\ (-3)^4 = 81 \\ \boxed{n = 4} \] --- ### **c. \( \sum_{r=1}^{n} 3 \cdot 2^{r-1} = 381 \)** This is a geometric series with: - First term \( a = 3 \) - Common ratio \( r = 2 \) - Sum formula: \( S_n = a \frac{r^n - 1}{r - 1} \) Substituting the known values: \[ 381 = 3 \frac{2^n - 1}{2 - 1} \\ 381 = 3(2^n - 1) \\ 2^n - 1 = 127 \\ 2^n = 128 \\ 2^7 = 128 \\ \boxed{n = 7} \] --- ### **d. \( \sum_{i=1}^{n} \frac{1}{5}(3)^{r-1} = 24 \frac{1}{5} \)** First, convert \( 24 \frac{1}{5} \) to an improper fraction: \[ 24 \frac{1}{5} = \frac{121}{5} \] This is a geometric series with: - First term \( a = \frac{1}{5} \) - Common ratio \( r = 3 \) - Sum formula: \( S_n = a \frac{r^n - 1}{r - 1} \) Substituting the known values: \[ \frac{121}{5} = \frac{1}{5} \cdot \frac{3^n - 1}{3 - 1} \\ \frac{121}{5} = \frac{3^n - 1}{10} \\ 3^n - 1 = 242 \\ 3^n = 243 \\ 3^5 = 243 \\ \boxed{n = 5} \] --- ### **e. \( \sum_{k=1}^{n} (-8) \cdot (0.5)^{k-1} = -\frac{63}{4} \)** This is a geometric series with: - First term \( a = -8 \) - Common ratio \( r = 0.5 \) - Sum formula: \( S_n = a \frac{1 - r^n}{1 - r} \) Substituting the known values: \[ -\frac{63}{4} = -8 \frac{1 - (0.5)^n}{1 - 0.5} \\ -\frac{63}{4} = -8 \cdot 2 (1 - (0.5)^n) \\ -\frac{63}{4} = -16 (1 - (0.5)^n) \\ \frac{63}{4} = 16 (1 - (0.5)^n) \\ 1 - (0.5)^n = \frac{63}{64} \\ (0.5)^n = \frac{1}{64} \\ \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^6 \\ \boxed{n = 6} \] --- **Final Answers:** - **a.** \( n = 9 \) - **b.** \( n = 4 \) - **c.** \( n = 7 \) - **d.** \( n = 5 \) - **e.** \( n = 6 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let's solve each part step by step! ### Part a: \( 2 + 4 + 8 + \ldots \) to \( n \) terms \( =1022 \) This is a geometric series with the first term \( a = 2 \) and common ratio \( r = 2 \). The sum of the first \( n \) terms of a geometric series can be calculated using the formula: \[ S_n = a \frac{r^n - 1}{r - 1} \] Substituting the values: \[ 1022 = 2 \frac{2^n - 1}{2 - 1} \] So, \[ 1022 = 2(2^n - 1) \implies 1022 = 2^{n+1} - 2 \implies 1024 = 2^{n+1} \] Thus, \[ 2^{n+1} = 1024 \implies n + 1 = 10 \implies n = 9. \] ### Part b: \( 6 - 18 + 54 + \ldots \) to \( n \) terms \( = -120 \) This series has the first term \( a = 6 \) and common ratio \( r = -3 \). The sum of the first \( n \) terms is calculated using: \[ S_n = a \frac{1 - r^n}{1 - r} \] Plug in: \[ -120 = 6 \frac{1 - (-3)^n}{1 - (-3)} \] This simplifies to: \[ -120 = 6 \frac{1 + 3^n}{4} \implies -480 = 6(1 + 3^n) \implies -80 = 1 + 3^n \] So, \[ 3^n = -81 \quad \text{(not possible as \( 3^n \) cannot be negative)} \] Let's calculate if we can find something useful by checking for positive integers only. ### Part c: \( \sum_{r=1}^{n} 3 \cdot 2^{r-1}=381 \) Here, this series can be rewritten as: \[ 3(2^0 + 2^1 + \ldots + 2^{n-1}) = 381 \] Using the sum formula for a geometric series again: \[ 3 \left( \frac{2^n - 1}{2 - 1} \right) = 381 \implies 3(2^n - 1) = 381 \implies 2^n - 1 = 127 \implies 2^n = 128 \] Thus, \[ n = 7. \] ### Part d: \( \sum_{i=1}^{n} \frac{1}{5}(3)^{r-1}=24 \frac{1}{5} \) This is similar: \[ \frac{1}{5} (3^0 + 3^1 + \ldots + 3^{n-1}) = 24.2 \] Multiply both sides by 5: \[ 3^0 + 3^1 + \ldots + 3^{n-1} = 121 \] The sum is: \[ \frac{3^n - 1}{3 - 1} = 121 \implies 3^n - 1 = 242 \implies 3^n = 243 \implies n = 5. \] ### Part e: \( \sum_{k=1}^{n} (-8)(0.5)^{k-1}=-\frac{63}{4} \) This series can be rewritten as: \[ -8 \sum_{k=0}^{n-1} (0.5)^k = -\frac{63}{4} \] Calculating yields: \[ -8 \left( \frac{1 - (0.5)^n}{1 - 0.5} \right) = -\frac{63}{4} \implies -8(1 - (0.5)^n) \cdot 2 = -\frac{63}{4} \] Thus: \[ -16(1 - (0.5)^n) = -\frac{63}{4} \implies 16(1 - (0.5)^n) = \frac{63}{4} \] Now multiply by 4 to clear fractions: \[ 64(1 - (0.5)^n) = 63 \implies

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad