Complete the equation of the line through \( (3,-8) \) and \( (6,-4) \). Use exact numbers. \( y=\square \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the equation of the line through the points \( (3,-8) \) and \( (6,-4) \), we first need to determine the slope (m) of the line. The formula for the slope between two points \( (x_1, y_1) \) and \( (x_2, y_2) \) is: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] Plugging in our points: \[ m = \frac{-4 - (-8)}{6 - 3} = \frac{4}{3} \] Now, we can use the point-slope form of the line equation, which is \( y - y_1 = m(x - x_1) \). Choosing point \( (3, -8) \): \[ y - (-8) = \frac{4}{3}(x - 3) \] Simplifying it, we get: \[ y + 8 = \frac{4}{3}x - 4 \] \[ y = \frac{4}{3}x - 12 \] So, the completed equation of the line is: \[ y = \frac{4}{3}x - 12 \]