Determine which of the following points are included in the solution set to the following system of linear inequalities. \[ \begin{array}{c}5 x+3 y>-1 \\ -5 x+y \leq 4\end{array} \] Answer \( \square(-9,-7) \) \( \square(7,-10) \) \( \square(3,19) \) \( \square\left(-4, \frac{19}{3}\right) \) \( \square(0,0) \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To determine which points are included in the solution set of the given system of inequalities, we'll analyze each point based on the inequalities provided. 1. For point \((-9, -7)\): - Check \(5(-9) + 3(-7) > -1\): \(-45 - 21 > -1 \implies -66 > -1\) (False). - Check \(-5(-9) + (-7) \leq 4\): \(45 - 7 \leq 4 \implies 38 \leq 4\) (False). 2. For point \((7, -10)\): - Check \(5(7) + 3(-10) > -1\): \(35 - 30 > -1 \implies 5 > -1\) (True). - Check \(-5(7) + (-10) \leq 4\): \(-35 - 10 \leq 4 \implies -45 \leq 4\) (True). - This point is in the solution set. 3. For point \((3, 19)\): - Check \(5(3) + 3(19) > -1\): \(15 + 57 > -1 \implies 72 > -1\) (True). - Check \(-5(3) + 19 \leq 4\): \(-15 + 19 \leq 4 \implies 4 \leq 4\) (True). - This point is in the solution set. 4. For point \((-4, \frac{19}{3})\): - Check \(5(-4) + 3(\frac{19}{3}) > -1\): \(-20 + 19 > -1 \implies -1 > -1\) (False). - Check \(-5(-4) + \frac{19}{3} \leq 4\): \(20 + \frac{19}{3} \leq 4\) (False, since \(20\) alone exceeds \(4\)). 5. For point \((0, 0)\): - Check \(5(0) + 3(0) > -1\): \(0 > -1\) (True). - Check \(-5(0) + 0 \leq 4\): \(0 \leq 4\) (True). - This point is in the solution set. In conclusion, the points included in the solution set are \( (7, -10) \), \( (3, 19) \), and \( (0, 0) \). Thus we can mark: \( \square(-9,-7) \) \( \checkmark(7,-10) \) \( \checkmark(3,19) \) \( \square\left(-4, \frac{19}{3}\right) \) \( \checkmark(0,0) \)