Pregunta
upstudy study bank question image url

Multiple Cholce 1 point Nicolas has \$650 to deposit into two different savings accounts. - Nicolas will deposit \$400 into Account I, which earns \( 3.5 \% \) annual simple interest. - He will deposit \( \$ 250 \) into Account II, which earns y \& \( \% \) interest compounded annually, Nicolas will not make any additional deposits or withdrawals. Which amount is closest to the total balance of these two accounts at the end of 2 years? \( \$ 672.13 \) \( \$ 694.51 \) \( \$ 694.25 \) \( \$ 695.00 \) Clear my selection

Ask by Chang Li. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The total balance after 2 years is approximately \$694.51.

Solución

To find the total balance of Nicolas's two accounts at the end of 2 years, we will calculate the balance for each account separately and then sum them up. ### Step 1: Calculate the balance for Account I Account I has a deposit of \$400 with an annual simple interest rate of \(3.5\%\). The formula for calculating the total amount \(A\) with simple interest is: \[ A = P(1 + rt) \] where: - \(P\) = principal amount (initial deposit) - \(r\) = annual interest rate (as a decimal) - \(t\) = time in years For Account I: - \(P = 400\) - \(r = 0.035\) - \(t = 2\) Substituting these values into the formula: \[ A_1 = 400(1 + 0.035 \cdot 2) \] ### Step 2: Calculate the balance for Account II Account II has a deposit of \$250 with an interest rate of \(y\%\) compounded annually. The formula for calculating the total amount \(A\) with compound interest is: \[ A = P(1 + r)^t \] where: - \(P\) = principal amount (initial deposit) - \(r\) = annual interest rate (as a decimal) - \(t\) = time in years For Account II: - \(P = 250\) - \(r = \frac{y}{100}\) - \(t = 2\) Substituting these values into the formula: \[ A_2 = 250\left(1 + \frac{y}{100}\right)^2 \] ### Step 3: Total balance after 2 years The total balance \(A_{total}\) after 2 years is: \[ A_{total} = A_1 + A_2 \] Now, we will calculate \(A_1\) and \(A_2\) and find \(A_{total}\). However, we need to know the value of \(y\) to proceed with the calculation for Account II. Since the problem does not provide \(y\), we will assume \(y\) is such that the total balance is one of the provided options. Let's calculate \(A_1\) first: \[ A_1 = 400(1 + 0.035 \cdot 2) = 400(1 + 0.07) = 400 \cdot 1.07 = 428 \] Now, we will calculate \(A_{total}\) for each option to find the corresponding \(y\). ### Step 4: Calculate \(A_{total}\) for each option 1. For \( \$672.13 \): \[ A_2 = 672.13 - 428 = 244.13 \] \[ 250\left(1 + \frac{y}{100}\right)^2 = 244.13 \] \[ \left(1 + \frac{y}{100}\right)^2 = \frac{244.13}{250} \approx 0.97652 \] \[ 1 + \frac{y}{100} \approx \sqrt{0.97652} \approx 0.9882 \] \[ \frac{y}{100} \approx -0.0118 \Rightarrow y \approx -1.18\% \text{ (not valid)} \] 2. For \( \$694.51 \): \[ A_2 = 694.51 - 428 = 266.51 \] \[ 250\left(1 + \frac{y}{100}\right)^2 = 266.51 \] \[ \left(1 + \frac{y}{100}\right)^2 = \frac{266.51}{250} \approx 1.06604 \] \[ 1 + \frac{y}{100} \approx \sqrt{1.06604} \approx 1.0325 \] \[ \frac{y}{100} \approx 0.0325 \Rightarrow y \approx 3.25\% \] 3. For \( \$694.25 \): \[ A_2 = 694.25 - 428 = 266.25 \] \[ 250\left(1 + \frac{y}{100}\right)^2 = 266.25 \] \[ \left(1 + \frac{y}{100}\right)^2 = \frac{266.25}{250} \approx 1.065 \] \[ 1 + \frac{y}{100} \approx \sqrt{1.065} \approx 1.032 \] \[ \frac{y}{100} \approx 0.032 \Rightarrow y \approx 3.2\% \] 4. For \( \$695.00 \): \[ A_2 = 695.00 - 428 = 267.00 \] \[ 250\left(1 + \frac{y}{100}\right)^2 = 267.00 \] \[ \left(1 + \frac{y}{100}\right)^2 = \frac{267.00}{250} \approx 1.068 \] \[ 1 + \frac{y}{100} \approx \sqrt{1.068} \approx 1.033 \] \[ \frac{y}{100} \approx 0.033 \Rightarrow y \approx 3.3\% \] ### Conclusion The closest total balance of the two accounts at the end of 2 years is \( \$694.51 \). Thus, the answer is: \[ \boxed{694.51} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the total balance after 2 years for both accounts, we start by looking at Account I. For Account I: - Principal = $400 - Interest Rate = 3.5% - Time = 2 years Using the formula for simple interest \( A = P(1 + rt) \): \[ A = 400(1 + 0.035 \times 2) = 400(1 + 0.07) = 400 \times 1.07 = 428 \] For Account II, assuming y is the interest rate, we will calculate it based on the amount deposited ($250): \[ A = P(1 + r)^t \] Let’s assume a few possible rates for y to calculate the balance at the end of 2 years. For example: - If y is 3%, the balance will be: \[ A = 250(1 + 0.03)^2 = 250(1.0609) = 265.23 \] Adding both account balances: - $428 (Account I) + $265.23 (Account II) = $693.23. Looking at the options provided, the total balance is closest to $694.25. Final Answer: $694.25

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad