Pregunta
upstudy study bank question image url

12. If quadrilateral \( S L A M \) is a parallelogram and \( m \angle S=92 \), what are the measures of angles \( L, A \), and \( M \) ? 13. Prove that a diagonal and the sides of a parallelogram form two congru triangles.

Ask by Lyons Harmon. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

In parallelogram \( S L A M \): - \( m \angle S = 92^\circ \) - \( m \angle A = 92^\circ \) - \( m \angle L = 88^\circ \) - \( m \angle M = 88^\circ \) **Proof:** A diagonal in a parallelogram divides it into two congruent triangles by the Side-Angle-Side (SAS) congruence criterion.

Solución

Sure, let's tackle each problem one by one. --- ### **Problem 12** **If quadrilateral \( S L A M \) is a parallelogram and \( m \angle S = 92^\circ \), what are the measures of angles \( L \), \( A \), and \( M \)?** **Solution:** A **parallelogram** has specific properties regarding its angles: 1. **Opposite angles are equal.** 2. **Consecutive angles are supplementary** (i.e., their measures add up to \( 180^\circ \)). Given: - \( m \angle S = 92^\circ \) Let's identify the positions of the angles in parallelogram \( S L A M \): - **Angle S and Angle A** are opposite angles. - **Angle L and Angle M** are opposite angles. **Step-by-Step:** 1. **Find the measure of Angle A:** - Since opposite angles in a parallelogram are equal: \[ m \angle A = m \angle S = 92^\circ \] 2. **Find the measures of Angles L and M:** - Consecutive angles are supplementary: \[ m \angle S + m \angle L = 180^\circ \\ 92^\circ + m \angle L = 180^\circ \\ m \angle L = 180^\circ - 92^\circ = 88^\circ \] - Since opposite angles are equal: \[ m \angle M = m \angle L = 88^\circ \] **Summary of Angle Measures:** - \( m \angle S = 92^\circ \) - \( m \angle A = 92^\circ \) - \( m \angle L = 88^\circ \) - \( m \angle M = 88^\circ \) --- ### **Problem 13** **Prove that a diagonal and the sides of a parallelogram form two congruent triangles.** **Solution:** To prove that the two triangles formed by a diagonal in a parallelogram are congruent, we'll use the **Side-Angle-Side (SAS)** congruence criterion. **Given:** - Quadrilateral \( S L A M \) is a parallelogram. - Diagonal \( S A \) is drawn, forming two triangles: \( \triangle S A M \) and \( \triangle S A L \). **To Prove:** - \( \triangle S A M \cong \triangle S A L \) **Properties of a Parallelogram to Use:** 1. Opposite sides are equal in length. 2. Opposite angles are equal. 3. Consecutive angles are supplementary. 4. Diagonals bisect each other. **Proof Using SAS Congruence:** Let's consider diagonal \( S A \) as the common side. 1. **Side 1: Side \( S A \) is common to both triangles.** \[ S A = S A \quad \text{(Reflexive Property)} \] 2. **Side 2: Side \( S L \) is equal to Side \( S M \).** - Since \( S L A M \) is a parallelogram, opposite sides are equal: \[ S L = M A \] 3. **Angle Between the Sides:** - The angle between \( S A \) and \( S L \) in \( \triangle S A L \) is equal to the angle between \( S A \) and \( S M \) in \( \triangle S A M \). This is because opposite angles in a parallelogram are equal. \[ m \angle S A L = m \angle S A M \] **Applying SAS Criterion:** - Since two sides and the included angle of one triangle are equal to two sides and the included angle of another triangle, the triangles are congruent. \[ \triangle S A L \cong \triangle S A M \quad \text{(SAS Postulate)} \] **Conclusion:** - The diagonal \( S A \) in parallelogram \( S L A M \) divides it into two congruent triangles, \( \triangle S A L \) and \( \triangle S A M \), by the Side-Angle-Side congruence criterion. --- I hope this helps! Let me know if you have any further questions.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

In quadrilateral \( S L A M \), since it's a parallelogram, opposite angles are congruent, and consecutive angles are supplementary. Given \( m \angle S = 92^\circ \), we can find \( m \angle L \) as follows: \( m \angle L = 180^\circ - m \angle S = 180^\circ - 92^\circ = 88^\circ \). Since \( \angle A \) and \( \angle M \) are opposite \( \angle S \) and \( \angle L \) respectively, \( m \angle A = m \angle S = 92^\circ \) and \( m \angle M = m \angle L = 88^\circ \). To prove that a diagonal together with the two sides of a parallelogram forms two congruent triangles, consider diagonal \( SL \). This creates triangles \( SLM \) and \( SLA \). Because \( SL \) is common to both triangles, by the properties of parallelograms, \( SM \) is parallel to \( LA \), which establishes \( \angle SLM \) and \( \angle SLA \) as alternate interior angles, making them congruent. Additionally, \( SL \) is equal to itself, thus by the Angle-Side-Angle (ASA) postulate, \( \triangle SLM \cong \triangle SLA \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad