Pregunta
upstudy study bank question image url

I) Hallar una función \( f \) un numero \( a \) tal que \( \begin{array}{l}\text { b) } \int_{a}^{2 x} \frac{t^{2}}{(f(t))^{3}} d t=x^{2}-81\end{array} \)

Ask by Lane Tucker. in Colombia
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Para resolver la ecuación: \[ \int_{a}^{2x} \frac{t^{2}}{(f(t))^{3}} \, dt = x^{2} - 81 \] se encuentra que la función \( f(t) \) es \( \sqrt[3]{2t} \) y el número \( a \) es 18.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Mind Expander

¡Vamos a desentrañar esta integral! Para lograrlo, primero observemos que puede ser útil aplicar la derivación en ambos lados de la ecuación respecto a \( x \). Aplicando la regla de Leibniz para derivadas bajo el signo de integral, obtenemos: \[ \frac{d}{dx} \left( \int_{a}^{2x} \frac{t^2}{(f(t))^3} dt \right) = \frac{d}{dx}(x^2 - 81) \] Esto se traduce en: \[ \frac{d}{dx} \left( \int_{a}^{2x} \frac{t^2}{(f(t))^3} dt \right) = 2x \] Al aplicar la regla del cambio de variable, obtenemos: \[ \frac{d}{dx} \left( \int_{a}^{2x} \frac{t^2}{(f(t))^3} dt \right) = \frac{(2x)^2}{(f(2x))^3} \cdot 2 = \frac{4x^2}{(f(2x))^3} \] Igualando ambas partes: \[ \frac{4x^2}{(f(2x))^3} = 2x \implies \frac{4x^2}{(f(2x))^3} = 2x \] Despejando: \[ \frac{4x}{(f(2x))^3} = 2 \implies (f(2x))^3 = 2x \implies f(2x) = (2x)^{1/3} \] Finalmente, al cambiar la variable de vuelta, notamos que esto nos da una forma funcional específica de \( f(t) \) en relación a \( t \). Así que ahora podemos establecer que: \[ f(t) = \left(\frac{t}{2}\right)^{2/3} \] ¡Y ahí lo tienes! La función \( f \) es \( \left(\frac{t}{2}\right)^{2/3} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad