Pregunta
If \( x>0 \), which of the following expressions is equivalent to \( \sqrt[3]{x^{-6}} \) ?
Ask by Fernandez Bradley. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
An equivalent expression to \( \sqrt[3]{x^{-6}} \) is \( \frac{1}{x^2} \).
Solución
To simplify the expression \( \sqrt[3]{x^{-6}} \) for \( x > 0 \), follow these steps:
1. **Rewrite the radical as an exponent:**
\[
\sqrt[3]{x^{-6}} = (x^{-6})^{1/3}
\]
2. **Apply the power of a power rule \((a^m)^n = a^{mn}\):**
\[
(x^{-6})^{1/3} = x^{-6 \times \frac{1}{3}} = x^{-2}
\]
3. **Express the negative exponent as a reciprocal:**
\[
x^{-2} = \frac{1}{x^2}
\]
Therefore, an equivalent expression to \( \sqrt[3]{x^{-6}} \) is:
\[
\frac{1}{x^2}
\]
**Answer:** \( \dfrac{1}{\,x^{2}\,} \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To simplify the expression \( \sqrt[3]{x^{-6}} \), we start by applying the property of exponents that states \( \sqrt[n]{a^m} = a^{m/n} \). In this case, we have: \[ \sqrt[3]{x^{-6}} = x^{-6/3} = x^{-2} \] Therefore, the expression \( \sqrt[3]{x^{-6}} \) is equivalent to \( x^{-2} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium