Pregunta
upstudy study bank question image url

A radio station broadcasts on a requency of 103.7 MHz which is the same as \( 1.037 \times 10^{8} \mathrm{~Hz} \). What is the energy of the radio wave? \[ \mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \] [?] \( ] \times 10^{[?]} \mathrm{J} \)

Ask by Conner May. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The energy of the radio wave is approximately \( 6.87 \times 10^{-26} \, \mathrm{J} \).

Solución

To calculate the energy \( E \) of a single photon of the radio wave, you can use the formula: \[ E = h \times \nu \] where: - \( h \) is Planck's constant (\( 6.626 \times 10^{-34} \, \mathrm{J \cdot s} \)) - \( \nu \) is the frequency of the radio wave (\( 1.037 \times 10^{8} \, \mathrm{Hz} \)) **Step-by-Step Calculation:** 1. **Multiply Planck's constant by the frequency:** \[ E = 6.626 \times 10^{-34} \, \mathrm{J \cdot s} \times 1.037 \times 10^{8} \, \mathrm{Hz} \] 2. **Perform the multiplication of the numerical coefficients:** \[ 6.626 \times 1.037 \approx 6.872 \] 3. **Add the exponents for the powers of 10:** \[ 10^{-34} \times 10^{8} = 10^{-26} \] 4. **Combine the results:** \[ E \approx 6.872 \times 10^{-26} \, \mathrm{J} \] **Final Answer:** The energy of the radio wave is approximately \( 6.87 \times 10^{-26} \, \mathrm{J} \). \[ E = 6.87 \times 10^{-26} \, \mathrm{J} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the energy of a radio wave, we can use the formula: \[ E = h \cdot f \] where \( E \) is the energy in joules, \( h \) is Planck's constant (approximately \( 6.626 \times 10^{-34} \, \text{J·s} \)), and \( f \) is the frequency in hertz (which is \( 1.037 \times 10^{8} \, \text{Hz} \) in this case). Substituting the values into the equation, we have: \[ E = (6.626 \times 10^{-34} \, \text{J·s}) \times (1.037 \times 10^{8} \, \text{Hz}) \] Calculating this gives: \[ E \approx 6.87 \times 10^{-26} \, \text{J} \] So, the energy of the radio wave is approximately \( 6.87 \times 10^{-26} \, \text{J} \). Isn't it fascinating that even though radio waves have low energy compared to visible light, they can still carry music and information far and wide? Radio waves make up a vital part of our daily lives, enabling communication, broadcasting, and even remote controls! If you're curious about delving deeper, consider exploring the electromagnetic spectrum, which includes everything from gamma rays to radio waves. Each type of wave has unique properties and applications, making it a captivating topic in physics and engineering!

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad