Pregunta
upstudy study bank question image url

Lesson 4.5 Number 4 Use the following diagram to solve the problem, given that \( \overline{\mathbf{A B}} \| \overline{\mathbf{C D}} \) and lin the transversal. Justify your answers using angle relationships in parallel lin intersected by a transversal. What is \( \mathrm{m} \angle 4 \) if \( \mathrm{m} \angle 4=2(5 \mathrm{x}-9) \) and \( \mathrm{m} \angle 5=3(\mathrm{x}+8) \) ? Answer format: 150 degrees

Ask by Ball Cox. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \mathrm{m} \angle 4 = 42 \) degrees

Solución

To solve for \( \mathrm{m} \angle 4 \), we will use the properties of parallel lines intersected by a transversal. Given that \( \overline{\mathbf{A B}} \| \overline{\mathbf{C D}} \) and line \( \ell \) is the transversal, we can identify the relationships between the angles. 1. **Identify the angle relationships**: - Since \( \overline{\mathbf{A B}} \| \overline{\mathbf{C D}} \), angles \( \angle 4 \) and \( \angle 5 \) are corresponding angles. Therefore, they are equal: \[ \mathrm{m} \angle 4 = \mathrm{m} \angle 5 \] 2. **Set up the equation**: - We have the expressions for the angles: \[ \mathrm{m} \angle 4 = 2(5x - 9) \] \[ \mathrm{m} \angle 5 = 3(x + 8) \] - Setting these equal gives us: \[ 2(5x - 9) = 3(x + 8) \] 3. **Solve for \( x \)**: - Expand both sides: \[ 10x - 18 = 3x + 24 \] - Rearranging the equation: \[ 10x - 3x = 24 + 18 \] \[ 7x = 42 \] - Dividing by 7: \[ x = 6 \] 4. **Substitute \( x \) back to find \( \mathrm{m} \angle 4 \)**: - Substitute \( x = 6 \) into the expression for \( \mathrm{m} \angle 4 \): \[ \mathrm{m} \angle 4 = 2(5(6) - 9) \] \[ = 2(30 - 9) \] \[ = 2(21) \] \[ = 42 \] 5. **Substitute \( x \) back to find \( \mathrm{m} \angle 5 \)**: - Substitute \( x = 6 \) into the expression for \( \mathrm{m} \angle 5 \): \[ \mathrm{m} \angle 5 = 3(6 + 8) \] \[ = 3(14) \] \[ = 42 \] Since both angles are equal, we confirm that \( \mathrm{m} \angle 4 = 42 \) degrees. Thus, the final answer is: \[ \mathrm{m} \angle 4 = 42 \text{ degrees} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

In a situation where you have two parallel lines cut by a transversal, several angle relationships come into play. For angles 4 and 5, they are considered alternate interior angles, which means they are equal! This means we can set their measurements equal to one another: \[ 2(5x - 9) = 3(x + 8) \] By solving this equation, we can find the value of \( x \) and subsequently determine the measure of angle 4. Once you've found \( x \), just plug it back into either equation to find the measure of angle 4. Isn't that neat? You'll soon discover that solving these types of problems not only enhances your understanding of geometry, but boosts your problem-solving chops as well! Another fun tidbit: parallel lines have been a foundational concept in geometry since ancient Egypt and Greece! Mathematicians like Euclid studied them extensively, aiming to understand the properties and relationships that arise when lines run side by side without ever meeting. So you're following in the footsteps of some very intelligent thinkers!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad