Find \( \cot (\theta) \) if \( \sin (\theta)=\frac{5}{13} \) and \( \theta \) terminates in QI. Answer exactly, \( \cot (\theta)=\square \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find \( \cot (\theta) \), we start with the given value of \( \sin (\theta) = \frac{5}{13} \). Since \( \theta \) is in the first quadrant (QI), we know that both sine and cosine are positive. 1. We can find \( \cos (\theta) \) using the Pythagorean identity: \[ \sin^2(\theta) + \cos^2(\theta) = 1. \] Plugging in \( \sin(\theta) \): \[ \left(\frac{5}{13}\right)^2 + \cos^2(\theta) = 1, \] \[ \frac{25}{169} + \cos^2(\theta) = 1. \] Subtracting \( \frac{25}{169} \) from both sides: \[ \cos^2(\theta) = 1 - \frac{25}{169} = \frac{169}{169} - \frac{25}{169} = \frac{144}{169}. \] Now taking the square root (and since \( \theta \) is in QI, we take the positive root): \[ \cos(\theta) = \frac{12}{13}. \] 2. Now we can find \( \cot(\theta) \) since \( \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} \): \[ \cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)} = \frac{\frac{12}{13}}{\frac{5}{13}} = \frac{12}{5}. \] Thus, \( \cot(\theta) = \frac{12}{5} \).