Pregunta
upstudy study bank question image url

How much would you have to deposit in an account with a \( 7.5 \% \) interest rate, compounded continuously, to have \( \$ 2500 \) in your account 8 years later? \[ P=\$[?] \]

Ask by Cole French. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

You need to deposit approximately \$1,371.46 now to have \$2,500 in your account after 8 years with a 7.5% continuously compounded interest rate.

Solución

To determine how much you need to deposit now (\( P \)) to have \$2,500 in your account after 8 years with a continuous compounding interest rate of \( 7.5\% \), you can use the formula for continuous compounding: \[ A = P e^{rt} \] Where: - \( A \) is the amount of money accumulated after \( t \) years, including interest. - \( P \) is the principal amount (the initial deposit). - \( r \) is the annual interest rate (in decimal). - \( t \) is the time the money is invested for in years. - \( e \) is the base of the natural logarithm (approximately 2.71828). Given: - \( A = \$2,500 \) - \( r = 7.5\% = 0.075 \) - \( t = 8 \) years **Step 1: Rearrange the formula to solve for \( P \)** \[ P = \frac{A}{e^{rt}} \] **Step 2: Plug in the known values** \[ P = \frac{2500}{e^{0.075 \times 8}} = \frac{2500}{e^{0.6}} \] **Step 3: Calculate \( e^{0.6} \)** \[ e^{0.6} \approx 1.8221188 \] **Step 4: Solve for \( P \)** \[ P = \frac{2500}{1.8221188} \approx 1371.46 \] **Final Answer:** \[ P = \$1,\!371.46 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the present value \( P \) needed to achieve \( \$2500 \) in 8 years with an interest rate of \( 7.5\% \) compounded continuously, we use the formula: \[ P = A \cdot e^{-rt} \] Where: - \( A \) is the future amount (\$2500) - \( r \) is the interest rate (0.075) - \( t \) is the time (8 years) - \( e \) is the base of the natural logarithm (approximately equal to 2.71828) Plugging in the values: \[ P = 2500 \cdot e^{-0.075 \cdot 8} \approx 2500 \cdot e^{-0.6} \approx 2500 \cdot 0.5488 \approx 1372.00 \] So, you would need to deposit approximately \( P \approx \$1372.00 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad