Complete the pattern: \[ \begin{array}{l} 184.38 \div \square \\ 1,843.8 \div \square=1.8438 \\ 18,438 \div \square \\ 184,380 \div \square=18.438 \\ =1,843.38\end{array} \]
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To complete the pattern, we can observe how the numbers are structured and the relationship between each division operation. 1. For \( 1,843.8 \div \square=1.8438 \), the square must equal 1000. This is because dividing \( 1,843.8 \) by 1000 gives \( 1.8438 \). 2. For \( 184.38 \div \square \), to follow the same pattern, we notice \( 184.38 \) is \( 184.38 \) times \( 100 \) (which is \( 0.18438 \) when divided by 1,000). Therefore, \( \square \) would equal 100. Continuing down the list, we follow the same pattern: For \( 18,438 \div \square \), we can reason that the square must be 1000 again (continuing the multiplication/division structure). For \( 184,380 \div \square=18.438 \), using \( 10 \). 1. For \( 184.38 \div 100 = 1.8438 \) 2. For \( 1,843.8\div 1000 = 1.8438 \) 3. For \( 18,438 \div 1000 = 18.438 \) 4. For \( 184,380 \div 10 = 18.438 \) Thus the filled values of the squares: - \( \square = 100 \) for the first line - \( \square = 1000 \) for the second - \( \square = 1000 \) for the third - \( \square = 10 \) for the fourth