Pregunta
upstudy study bank question image url

12 A six-sided die is biased. When the die is thrown the number 5 is twice as likely to appear as any other number. All the other faces are equally likely to appear. The die is thrown repeatedly. Find the probability that: a the first 5 will occur on the sixth throw b in the first eight throws there will be exactly three 5 s .

Ask by Montgomery Pope. in the United Kingdom
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that the first 5 occurs on the sixth throw is \( \left(\frac{5}{7}\right)^5 \times \frac{2}{7} \).

Solución

To solve the problem, let's first determine the probabilities associated with the biased six-sided die. ### Understanding the Die's Probabilities - **Face 5 Probability:** Let's denote the probability of rolling a 5 as \( P(5) = 2p \). - **Other Faces Probability:** Each of the other five faces (1, 2, 3, 4, 6) has an equal probability of appearing, denoted as \( P(\text{non-}5) = p \). Since the total probability must sum to 1: \[ 5p + 2p = 7p = 1 \implies p = \frac{1}{7} \] Therefore: \[ P(5) = 2p = \frac{2}{7} \quad \text{and} \quad P(\text{non-}5) = \frac{1}{7} \] ### Problem a: Probability that the First 5 Occurs on the Sixth Throw For the first 5 to appear on the sixth throw: 1. The first five throws must **not** be a 5. 2. The sixth throw **must** be a 5. The probability can be calculated as: \[ P(\text{First 5 on 6th throw}) = \left(\frac{5}{7}\right)^5 \times \frac{2}{7} \] **Explanation:** - \( \left(\frac{5}{7}\right)^5 \) represents the probability that the first five throws are not 5. - \( \frac{2}{7} \) is the probability that the sixth throw is a 5. ### Final Answer **Problem a Answer:** The probability is (5⁄7)^5 multiplied by (2⁄7). Thus, Probability = (5/7)^5 × 2/7

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let’s define the probabilities first: let p be the probability of rolling any number other than 5. Since the number 5 is twice as likely to appear, we have \( P(5) = 2p \) and the total probability must equal 1 for all sides of the die. The six faces of the die give: \[ P(5) + 5P(\text{other}) = 1 \] \[ 2p + 5p = 1 \] \[ 7p = 1 \] Thus, \( p = \frac{1}{7} \) and \( P(5) = 2p = \frac{2}{7} \). **a. Probability the first 5 will occur on the sixth throw:** This follows a geometric distribution where the probability of failure (not rolling a 5) is \( \frac{5}{7} \). The probability of the first 5 occurring on the sixth throw is: \[ P(\text{1st 5 on 6th}) = \left( \frac{5}{7} \right)^5 \times \left( \frac{2}{7} \right) \] Calculating it: \[ P(\text{1st 5 on 6th}) = \left( \frac{5}{7} \right)^5 \times \left( \frac{2}{7} \right) = \frac{3125}{16807} \times \frac{2}{7} = \frac{6250}{117649} \approx 0.0532 \] **b. Probability of exactly three 5’s in the first eight throws:** This follows a binomial distribution where \( n = 8 \) and \( k = 3 \) with the probability of success being \( \frac{2}{7} \). The formula is: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \] Where \( n = 8 \), \( k = 3 \), \( p = \frac{2}{7} \), and \( 1-p = \frac{5}{7} \). Calculating it: \[ P(X = 3) = \binom{8}{3} \left( \frac{2}{7} \right)^3 \left( \frac{5}{7} \right)^{5} \] \[ = 56 \times \frac{8}{343} \times \frac{3125}{16807} \] The binomial coefficient \( \binom{8}{3} = 56 \), Thus: \[ = 56 \times \frac{8 \times 3125}{343 \times 16807} = 56 \times \frac{25000}{574703} \approx 0.1907 \] So, the answers are: a. \( P(\text{1st 5 on 6th}) = \frac{6250}{117649} \) b. \( P(\text{exactly 3 fives in 8 throws}) \approx 0.1907 \)

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad